scared yet, human?

g

We asked GPT-3, OpenAl's powerful new language generator, to
write an essay for us from scratch. The assignment? To




Lecture overview

o Backpropagation
o In

o More

o Detail

o (kidding)
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Lecture overview

o Normalization
o Regularization

o Hyperparameters
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Regularization




Why might the left Why mi%ht the
be better? right be

etter?




Digression: Gravitation

Newton: Einstein:
General Relativity
miMms N ewtong’an Part C orrecti‘on Term
F=G—/F—, GMm L2 G(M +m)L2
r r)=- T * 2ur: c2urd

What if nature is fundamentally non-linear / complicated?

lgl UNIVERSITY OF AMSTERDAM DEEP LEARNING ONE - 6 VISLab




Bias-variance tradeoff

o Point Estimation

- The single “best” prediction of some quantity of interest, which can be a
single parameter or a vector of parameters.

- Point estimate of the relationship between input and target variables is
referred to as function estimators.

> A point estimator or statistic is any function of the data:

0, = gV, ... ™)
where {#V,..., 2™} are independent and identically distributed.

o A good estimator is a function whose output is close to the true
underlying O that generated the data
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Bias-variance tradeoff

o Bias

- “The difference between this estimator’s expected value and the true
value of the parameter being estimated” .

o The bias error is an error from erroneous assumptions in the
learning algorithm.

o Variance

- The amount that the estimate of the target function will change it
different training data was used.

o The variance is an error from sensitivity to small fluctuations in the
training set.
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Bias-variance tradeoff

overfitting
zone

Low Bias

Low Variance High Variance
generalization

.'_'. error .‘-.-_.-‘
bias ' variance b
......... !.'._..' L)
............... r"-....-...‘-...'-....-..... .
........................... X ereinen
. P capacity '
optimal capacity

o High bias can cause an algorithm to miss the relevant relations between features and
target outputs (underfitting), e.g., linear models.

High Bias

o High variance may result from an algorithm modelling the random noise in the
training data (overfitting), e.g., nonlinear models.
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https://images.app.goo.gl/Axc76P5KNoqK7udn6

Overfitting

o One of the most important aspects when training neural networks
is avoiding overfitting.
- Overtfitted models fail on new data from the same problem domain.

- Caused by noise in the training data that the neural network picks up during
training and learns it as an underlying concept of the data.

underfitting good fit overfitting

— Model ~— Model — Model
~— True function ~ True function ~ True function
e Samples e Samples e Samples
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Overfitting

o Why does the neural network pick up that noise in the first place?
o the complexity of this network is too high (for the problem).
> is able to pick up and learn patterns (noise) in the data.
> try to model each data sample, while not learning underlying true function

- New arbitrary samples generated with the true function would have a high
distance to the fit of the model (remember how non-linear neural networks
are!)
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Overfitting

o Neural networks typically have thousands, if not millions of parameters
> Usually, the dataset size smaller than the number of parameters

o Overtfitting is a grave danger

o Overfitting causes the neural network model to perform very well during
training, but the performance gets much worse during inference time when
faced with brand new data.

o To prevent overfitting or a high variance we must use something that is called
reqularization.
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Overtfitting: how “powerful” are neural networks?

Randomization tests. At the heart of our methodology is a variant of the well-known randomiza- 2.5
tion test from non-parametric statistics (Edgington & Onghena, 2007). In a first set of experiments,
we train several standard architectures on a copy of the data where the true labels were replaced by

true labels

—a

random labels. Our central finding can be summarized as: 2.0 o—e random labels |-
H -
Deep neural networks easily fit random labels. § === shuffled pixels b o
215 —— random pixels |{ ¢
More precisely, when trained on a completely random labeling of the true data, neural networks () >—0 aussian S
achieve 0 training error. The test error, of course, is no better than random chance as there is no % 9 f_
correlation between the training labels and the test labels. In other words, by randomizing labels o 1.0 1 a
alone we can force the generalization error of a model to jump up considerably without changing % ¢
the model, its size, hyperparameters, or the optimizer. We establish this fact for several different +

standard architectures trained on the CIFAR10 and ImageNet classification benchmarks. While 0.5 i

simple to state, this observation has profound implications from a statistical learning perspective:
1. The effective capacity of neural networks is sufficient for memorizing the entire data set. 0-00 5 10 15 20 25

2. Even optimization on random labels remains easy. In fact, training time increases only by
a small constant factor compared with training on the true labels. thousand steps

3. Randomizing labels is solely a data transformation, leaving all other properties of the learn-

ing problem unchanged. (a) learning curves

Understanding deep learning requires rethinking generalization. Zhang et al. 2016
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Update 2019: Double Descent

a)_ _ MNISTID no label noise b)_, MNISTID 15% label noise

60 60 o a)no “usual” bias-variance trade-off curve:

50 E 50 : easy
40 : K40 I
5., . 5., | oot o b) “usual” bias-variance trade-off curve
. ~ ... except test error goes down again

; . and ends up lower?!

0 : Train 0 : Train

0 100 200 300 400 0 100 200 300 400 O Same for C) d).
Hidden layer size Hidden layer size

S | CIFAR 100 o What’s going on?

y : o Smoothness, regularisation
g E a)| 0 Loss =0 b) Loss =0 c Loss =0
= :
o o4 | : Test 20% noise
o 1 1 =
g | | - . : / / \ /N
T I I est no noise av 7/ / 7
wn 1 1 =} \ \

0.2 ' | 0 | o @ d “

: . :Tram 20% noise _‘)’ \_‘)’ \~..._{/°/
! Train "!"‘Train no noise 1965 05 1.0 0.0 05 1.0 0.0 05 10
0 0 : Input, = Input, = Input, =
10 100 1000 0 10 20 30 40 50 60 70
3 .
Number of parameters <10 Resnet 18 width parameter Belkin, M., Hsu, D., Ma, S., & Mandal, S. (2019) Reconciling modern machine-learning practice and the
The MNIST-1D dataset has 40 dimensions and here 10K samples classical bias—variance trade- off. Proceedings of the National Academy of Sciences
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Double-descent: Smoothness from bigger models

6 hidden units c)

7 hidden units

a) b)
1.0
> /
200 7/ ] /
5
(@) ol \_1)/. N )/G
I‘oo.o 0.5 1.0 0.0 0.5 1.00.0 0.5 ' 1.0
d)I . 8 hidden units e) 10 hidden units f) 50 hidden units
>
:g_o.o
=}
o /I (| o
\‘)
I'oo.o 0.5 1.0 0.0 0.5 1.00.0 0.5
Input, = Input, x Input,

This matters, because we're seeing that larger
and larger models are performing much
better even at less compute (though we're not

in the DD regime) ->

Test Loss 10

Larger models require fewer samples
to reach the same performance

\<— — 1038 Params
\\_\\'Q ‘7“
10° Params — \ N~
AN W
A \ > ; ' —
—_——

e e,

107 109 101
Tokens Processed

Scaling Laws for Neural Language Models. Kaplan et al. 2020
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Double-descent in practice?

o In practice, we (so far) rarely see this

o Why?
> Not in the double-descent regime
c “Hoping” for more neurons to solve the problem doesn’t solve it
o Problems actually even more higher-dimensional because of augmentations

o So?

- We need regularisation techniques (also used for those huge language
models!)
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Regularization

o Regularization refers to a set of different techniques that lower the complexity
of a neural network model during training, and thus prevent the overfitting.

o Possible regularization methods
o £,-regularization
o £1-regularization
- Early stopping
> Dropout
o anything...
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1) £,-regularization

o The L, regularization is the most common type of all regularization
techniques
- commonly known as weight decay or ridge regression (in the linear case).

o The regularization term () is defined as the Euclidean Norm (or L2 norm) of
the weight matrices
- which is the sum over all squared weight values of a weight matrix.

1
30wl

o L2 regularization encourages the weight values towards zero

o A Gaussian prior on weights
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1) £,-regularization

o The loss function with ¢,-regularization:

« : A 2
W~ ¢« arg min,, z L(y, aL(x; Wi,..L )) + zz lwill2
(YIS l

o The ¢,-regularization is added to the gradient descent update rule

Wi = Wi — (VgL + Awy) =
Wi = (1 — /177t)W(t) — NVl

\ ”Weight decay", because

weights get smaller

o Aisusually about 1071,1072
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2) £1-regularization

o L1 regularization, also knows as Lasso regression
> The sum of the absolute values of the weight parameters in a weight matrix

>
> l|Wl|

- The regularization term does not scale linearly, contrary to L2 regularization,
but it’s a constant factor with an alternating sign.

> A prior of an isotropic Laplacian distribution on weights.
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2) £1-regularization

o ¥;-regularization is one of the most important regularization techniques

_ A
w'cargmin, Y Lora(niw.)+5 ) il
(Y)SXY)

o Also ¢{-regularization is added to the gradient descent update rule

L
Wip1 = We — ¢ (‘791: + 4 )

sgn(w®))
o fqi-regularization = sparse weights \

A7 > more weights become 0 Sign function
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Why do L1 and L2 Regularizations work?

o The estimates of W; and W, are given by the first point where the ellipse
intersects with the green constraint area.

o The other green constrained parts have worse losses

A L1 regularization B L2 regularization

\A Ty \Al‘z
0

Ho

NN
NN NN

Think of an “equal cost” line H_0

£,-regularization £,-regularization
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Effect: linear regression example

L1 and positive L1
Ridge coefficients as a function of the regularization Lasso and positive Lasso

25 A

200 A 20 A

15 4
100 A %)

_}g § 10 A
2 S

g T 5
0- S

0 -

~100 - =

-10 4 — Lasso
——- positive Lasso
10—3 10—5 10—7 10-9 -1.5 -1.0 -0.5 0.0 0.5
alpha -Log(alpha)

Alpha == our lambda
https://scikit-learn.org/stable/modules/linear_model.html
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3) Early stopping

o Monitor performance on a separate validation set
o Training the network will decrease training error, as well validation error

o When validation error starts increasing, it is quite likely that the network
starts to overtit.

0.20 T T T r
e—e 'Training set loss

0.15 ——  Validation set loss |

Loss (negative log-likelihood)

0 50 100 150 200 250
Time (epochs)

- "~~~
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3) Early stopping

o We can obtain a model with better validation set error
- The parameter setting at time point with the lowest validation set error.
- The models at this stage have low variance and generalize the data well.

o Further training would increase the variance of the model and lead to
overfitting.

o This strategy is Early Stopping.
- Commonly used, effectiveness and simplicity.
o Need a validation set (different from test set!)
- Need to maintain a copy of the best parameters.
o Either alone or with other regularization strategies. e

Validation Error

Error

Increasing Variance

Increasing Bias
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3) Early stopping

o We can think of early stopping is as an efficient hyperparameter selection:
- The number of training steps is just another hyperparameter.

- Most hyperparameters that control model capacity have such a U-shaped
validation set performance curve.

- When do we know when we're in the valley?

Error

Underfitting zone| Overfitting zone

— - Training error

—— (Generalization error

\__
\\

0

Optimal Capacity
Capacity
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Why does early-stopping work as regularization?

o For a simple linear model with a quadratic error function and simple gradient
descent, early stopping is equivalent to £,-regularization.

o «a is the regularization constant, 7 is no. of iterations, and ¢ is the learning rate.

o Increasing no. of epochs/iterations 7 is equivalent to reducing the
regularization constant a.

lgl UNIVERSITY OF AMSTERDAM DEEP LEARNING ONE - 27 VISLab



Why does early-stopping work as regularization?

o Rather than stopping at the point w* that minimizes the cost, early stopping results in
the trajectory stopping at an earlier point w .

Q—— /’Q
s re SRR
/ /"-\\\
//\\‘\
T
Y. L~”//
~ sz 7/
w1 w1

o Early stopping has the advantage over weight decay that early stopping
automatically determines the correct “amount of regularization” while weight decay
requires many training experiments with different values of its hyperparameter.
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4) Dropout: the problem it addresses

o The co-adaptation phenomenon

- Co-adaptation refers to when different hidden units in a neural networks
have highly correlated behaviour.

o It is common that some of the connections will have more predictive
capability than the others.

- These powerful connections are learned more while the weaker ones are
ignored.

- Over many iterations, only a fraction of the node connections is trained. And
the rest stop participating.

o Dropout resolves this co-adaptation issue.
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4) Dropout: why does it work?

o Bagging
o A technique for reducing generalization error by combining several models.

o To train several different models separately, then have all of the models vote
on the output for test examples.

- Techniques employing this strategy are known as ensemble methods.

o Ensemble e ey S
> Different kinds of models. AN (oo ecol | atele
> Different initializations. sssassasss (3888 e~ | me | | smed | | Zoemy
- Using a different algorithm. —= %é” %g%” %Qc%é”
- Constructing different datasets. | -
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4) Dropout: why does it work?

o Makes bagging practical for ensembles of very many neural nets.
- Bagging seems impractical for a large neural network.
o Training and evaluating is costly in terms of runtime and memory.

o Dropout provides an inexpensive approximation to training and
evaluating a bagged ensemble of exponentially many neural
networks.

7
i
i
¥ |

&
s
3
s
-
&
S
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4) Dropout: how is it implemented?

o During training randomly set activations to 0
- Neurons sampled at random from a Bernoulli distribution with p (eg, p = 0.5)
- Neuron activations reweighted by 1/p

o During testing all neurons are used

o Benetfits
- Reduces complex co-adaptations between neurons
- Every neuron becomes more robust
- Decreases overfitting

o Not super common for large scale datasets.
However in different form more common: “DropPath/stoch. Depth”
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Dropout

o Effectively, a different architecture for every input batch during training

Original model
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Dropout

o Effectively, a different architecture for every input batch during training
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Dropout

o Effectively, a different architecture for every input batch during training

Batch 1
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Dropout

o Effectively, a different architecture for every input batch during training
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Dropout

o Effectively, a different architecture for every input batch during training

Batch 2
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Dropout

o Effectively, a different architecture for every input batch during training

(Reeh &

+Olg C

) (=)
5 O e:/‘\oe c
(2)
©
©
C
Ole-e©

Ensemble of subnetworks
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Dropout vs. Bagging

o Bagging
- The models are all independent
- Each model is trained to convergence on its respective training set.

o Dropout

- The models share parameters, with each model inheriting a different subset
of parameters from the parent neural network.

o Typically, most models are not explicitly trained at all.

o The training set encountered by each sub-network is indeed a subset of the
original training set sampled with replacement.
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Dropout beyond Bagging

o Dropout trains not just a bagged ensemble of models, but an ensemble of
models that share hidden units.

o Each hidden unit must be able to perform well regardless of which other
hidden units are in the model.

o Hidden units must be prepared to be swapped and interchanged between
models.

o Dropout thus reqularizes each hidden unit to be not merely a good feature but a
feature that is good in many contexts.
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5) Data augmentation

o The best way to make a machine learning model generalize better is to
train it on more data. (see: “The unreasonable effectiveness of data”)
> Data* is limited in practice
> One way is to create fake data — Data Augmentation™*

o Your neural network is only as good as the data you feed it.

o By performing augmentation, we can prevent neural networks from learning
or memorizing irrelevant patterns, essentially boosting overall performance.

* Labeled data
** Not that trivial. Augmentations are more than just fake data. See lecture 13 on self-supervised learning
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Data augmentation

o Augmentation techniques in vision o In NLP
o Flip o Backtranslation
o Rotation e
° Scale original | I have no time | in'zl"ag‘m il
‘je n'ai pas le temps‘
© CI‘Op augmented | I do not have time| translate to
o Translation g

@]

S;nonym replacement

[¢]

Gaussian noise
Random insertion

@]

o Be aware of label change
° llbll and Ildll
° ll6ll and 11911

Random deletion

@]

@]

Random swapping

Link
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https://nanonets.com/blog/data-augmentation-how-to-use-deep-learning-when-you-have-limited-data-part-2/

One note about backtranslation though:

= Google Translate 3

X Text B Documents

HUNGARIAN - DETECTED  POLISH P. .~ ENGLISH POLISH  PORTUGUESE v
0 szép. O okos. O olvas. O mosogat. 0 X She is beautiful. He is clever. He reads. Y
épit. O varr. O tanit. O f6z. O kutat. O She washes the dishes. He builds. She
gyereket nevel. O zenél. O takarité. O sews. He teaches. She cooks. He's
politikus. O sok pénzt keres. O researching. She is raising a child. He
siiteményt siit. O professzor. 0 plays music. She's a cleaner. He is a
asszisztens. | politician. He makes a lot of money. She

is baking a cake. He's a professor. She's
an assistant.

U D) 194/5000 » <) D 7z <
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Common computer vision augmentations visualised
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Data augmentation

o Is effectively another hyperparameter, ie you cannot run SGD on it
to find best augmentations.
- But Reinforcement Learning: AutoAugment, Rand Augment etc.

o Hard to tune & domain dependent:

o Eg, What Should Not Be Contrastive in Contrastive Learning. Xiao et al. ICLR 2021: if you want to identify specific
flower types... randomly changing the color as augmentation is not so good.

o One interpretation: a way to incorporate “domain knowledge” into

VISLab
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Data augmentation

o It really works. Major part of state of the art training pipelines

Method Depth Params Cl0 Cl10+ C100 C100+

Network in Network [ - - 1041 8.81 35.68 -
All-CNN [32] - - 9.08 7L - 33.71
Deeply Supervised Net [ 20] - - 9.69 797 - 34.57
Highway Network [+ - - - 112 - 32.39
FractalNet [17] 21 38.6M 10.18 5.22 35.34 23.30
with Dropout/Drop-path 21 38.6M 7.33 4.60 28.20 23.73

ResNet [ 1] 110 1.7TM - 6.61 - -
ResNet (reported by [17]) 110 1.7M 13.63 6.41 44.74 27.22
ResNet with Stochastic Depth [ 7] 110 1.7M 11.66 5.23 37.80 24.58

1202 10.2M - 491 - -
Wide ResNet [ 1] 16 11.0M - 4.81 - 22.07
28 36.5M - 4.17 - 20.50

with Dropout 16 2. ™M - - - -
ResNet (pre-activation) [ | 7] 164 1.7M 11.26* 5.46 35.58* 24.33
1001 10.2M 10.56* 4.62 3347° 22.71
DenseNet (k = 12) 40 1.0M 7.00 5.24 27.55 2442
DenseNet (k = 12) 100 7.0M 5.77 4.10 23.79 20.20
DenseNet (k = 24) 100 27.2M 5.83 3.74 23.42 19.25
DenseNet-BC (k = 12) 100 0.8M 5.92 451 24.15 22.27
DenseNet-BC (k = 24) 250 15.3M 5.19 3.62 19.64 17.60
DenseNet-BC (k = 40) 190 25.6M - 3.46 - 17.18

Table 2: Ingredients and hyper-parameters used for ResNet-50 training in different papers. We
compare existing training procedures with ours.
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Previous approaches | Ours
Procedure — ResNet PyTorch  FixRes DeiT FAMS (x4) Al A2 A3
Reference [13] [ [48] [45] [10]
Train Res 224 224 224 224 224 224 224 160
Test Res 224 224 224 224 224 224 224 224
Epochs 90 90 120 300 400 600 300 100
# of forward pass 450k 450k 300k 375k 500k 375k 188k 63k
Batch size 256 256 512 1024 1024 2048 2048 2048
Optimizer SGD-M SGD-M SGD-M AdamW  SGD-M LAMB LAMB LAMB
LR 0.1 0.1 02  1x107* 2.0 5x107% 5x107® 8x107°
LR decay step step step cosine step cosine cosine cosine
decay rate 0.1 0.1 0.1 0.02t/400
decay epochs 30 30 30 - 1 - - -
Weight decay 1074 1074 1074 0.05 1074 0.01 0.02 0.02
Warmup epochs 5 5 5 5 5
Label smoothing e 0.1 0.1 0.1
Dropout
Stoch. Depth 0.1 0.05 0.05
Repeated Aug v v v v
Gradient Clip.
H. flip v v v 4 4 v v v
RRC v v 4 4 v v v
Rand Augment 9/05 7/05 7/0.5 6/0.5
Auto Augment 4
Mixup alpha 0.8 0.2 0.2 0.1 0.1
Cutmix alpha 1.0 1.0 1.0 1.0
Erasing prob. 0.25
ColorJitter v v
PCA lighting v
SWA v
EMA
Test crop ratio | 0875 0.875 0.875 0.875 0875 | 095 0.95 0.95
CE loss v v v v v
BCE loss v v v
Mixed precision | v v | v v v
Top-1 acc. | 753%  761%  77.0% 78.4% 795% | 80.4% 79.8% 78.1%
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Other regularizations

o Noise robustness
- adding noise to weights - uncertainty
- adding noise to outputs - label smoothing

o Semi or self-supervised learning
° introducing a particular form of prior belief about the solution
- smoothness, generaliseability

o Multi-task learning
o shared the input and parameters — improve the statistical strength
o require statistical relationship between tasks
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Various ways to regularise

o UDL book, Chapter 9

lgl UNIVERSITY OF AMSTERDAM

a) Make function smoother b) Increase data

Data
augmentation

Apply noise

Explicit L2 tolInputs Multi-task
regularization Apply noise learning
ioToipULs Transfer
Early (label smoothing) learning

stopping

Implicit
regularization

Ensembling

Dropout

Bayesian
approach Apply noise

to weights

¢) Combine multiple models d) Find wider minima

Figure 9.14 Regularization methods. The regularization methods discussed in
this chapter aim to improve generalization by one of four mechanisms. a) Some
methods aim to make the modeled function smoother. b) Other methods increase
the effective amount of data. ¢) The third group of methods combine multiple
models and hence mitigate against uncertainty in the fitting process. d) Finally,
the fourth group of methods encourages the training process to converge to a wide
minimum where small errors in the estimated parameters are less important.
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Normalization

Group Norm

)
Z
L
Q
=
<
S
12}
=
=

Figure 2. Normalization methods. Each subplot shows a feature map tensor, with N as the batch axis, C as the channel axis, and (H, W)

as the spatial axes. The pixels in blue are normalized by the same mean and variance, computed by aggregating the values of these pixels.



Data preprocessing

o Normalization

- The data pre-processing to bring the numerical data to a common scale
without distorting its shape.

- The reason is partly to ensure that our model can generalize appropriately.

o This ensures that all the feature values are now on the same scale.

A A
‘ . W2 W2

Y v Link
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https://towardsdatascience.com/batch-norm-explained-visually-how-it-works-and-why-neural-networks-need-it-b18919692739

Normalizing Input Data

o Transforming the input to zero-mean, unit variance
> Assume: Input variables follow a Gaussian distribution (roughly)
o Subtract input by the mean
> Optionally, divide by the standard deviation
N(u,0%) - N(0,1)

original data zero-centered data normalized data
10 10

Picture credit; Stanford Course

Eg ImageNet: mean = [0.485, 0.456, 0.406] and std =[0.229, 0.224, 0.225]
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Normalizing intermediate layers

o Batch normalization

N
o Layer normalization = I . H = SRS, STTF
. . T ™ = 1 T =N L] :/
o Instance normalization y _ SRR C
N : : g :/: :
o Group normalization € N % N
Batch Norm Layer Norm Instance Norm Group Norm

o Weight normalization

0.06

0.04 == Layer Normalization

== Batch Normalization
=== Local Response Normalization
=== |nstance Normalization
0.02 Spectral Normalization
- Adaptive Instance Normalization

Proportion of Papers (Quarterly)

2014 2015 2016 2017 2018 2019 2020
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Batch normalization

o The activations from the previous layer are simply the inputs to this layer.

o Batch normalization is a process to make neural networks faster and more
stable through adding extra layers in a deep neural network.

o Takes place in batches, not as a single input.

o This normalization is applied typically before activation.

Batch Norm

A

N\

Merged Spatial
Dimensions (H,W)

Channels C

>
Mini-Batch Samples N

lg,l UNIVERSITY OF AMSTERDAM DEEP LEARNING ONE - 53 VISLab




Batch normalization

o Normalize the layer inputs with batch normalization @
o Normalize a; ~ N(0,1)
- Followed by affine transformation
a < ya+p

o The parameters y and [ are trainable

o Used for re-scaling (y) and shifting (f) of the vector values.

o Ensure the optimal values of y and {3 are used.

o Enable the accurate normalization of each batch.
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Batch normalization — The algorithm

o I runs over mini-batch samples, j over the feature dimensions

je = Zl 1 Xij [compute mini-batch mean]
2 .. :
a — — Z 1(xl M j) [compute mini-batch variance]
S Xij—Hj lize i ¢
Xij - [normalize input]
Xijj—yXij+p [scale and shift input]

Trainable parameters
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How does batch normalization help optimization?

o Internal covariate shift ?

- The change in the distribution of layer inputs caused by updates to the
preceding layers.

o Little concrete evidence supporting it.

> Seems no link between the performance gain of BN and the reduction of
internal covariate shift.

Layer #9 Layer #17

IR TR N

— Standard

Standard +
BatchNorm

102

le-07
[}
2

N—

1

e L

Deep linear networks (25 layers)

LR
Training Loss

[}
<
Cos Angle £,-Diff.

Santurkar, et al., How Does Batch Normalization Help Optimization?, NeurIPS, 2018
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How does batch normalization help optimization?

o The impact of BatchNorm on the stability of the loss
o It makes loss landscape significantly smoother.
o Improvement in the Lipschitzness of the loss function.
o It makes gradients of the loss more Lipschitz too.

(@]

it makes the gradients more reliable and predictive.

10! 45

[ Standard —— Standard
[ Standard + BatchNorm 40 —— Standard + BatchNorm
0 35

g 30
L

N
u
o

[ Standard

200

%
o

S 25
o

%20
Qs

Loss Landscape
e e
o
o

u
=)

10°

Gradient Predictiveness

10

5
0 5k 10k 15k 0 5k 10k 15k 0 5k 10k 15k
Steps Steps Steps

=}

(a) loss landscape (b) gradient predictiveness (c) “effective” B-smoothness

o Recently: also networks without normalisation, but careful initialisation [High-Performance Large-Scale
Image Recognition Without Normalization. Brock et al. 2021]

Santurkar, et al., How Does Batch Normalization Help Optimization?, NeurIPS, 2018
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Benefits of Batch normalization

o Networks train faster

o Allows higher learning rates

o Makes weights easier to initialize

o Makes more activation functions viable

o The added noise reduces overfitting

o Simplifies the creation of deeper networks
o Provides a bit of regularization

o May give better results overall
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I Quiz: I

How would you use batch normalization at test time?

A) go through the dataset in a predefined order
B) go through the dataset in a random order

C) go through the dataset in a random order
multiple times
D) simply skip it
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Batch normalization at test time

m
. 1
o How do we ship the Batch Norm layer after Hp < — ) Xi
training? i=1
- We might not have batches at test time -
- Batches are random? -> not reproducible op %z(xi — Uug)?
i=1

o Usually: keep a moving average of the mean

and variance during training X <
> Plug them in at test time o + ¢

o To the limit, the moving average of mini-batch
statistics approaches the batch statistics
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Disadvantages of batch normalization

o Requires large mini-batches
o Cannot work with mini-batch of size 1 (¢ = 0)
 Performance is sensitive to the batch size
> Very memory intense, all the batch statistics must be stored in the layer.
> Discrepancy between training and test data
> Breaks the independence between training examples in the minibatch
> Not applicable to online learning
> Can limit model capability (zero-mean)

o Awkward to use with recurrent neural networks
> Must interleave it between recurrent layers
o Also, store statistics per time step

o Often the reason for bugs

o There are more reasons.
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Disadvantages of batch normalization with distributed training

Mini-f)atch

batch batch 3

batch 2

GPU1

GPU 2

Backward Pass

Compute
Gradients dx;

Backward Pass

Compute
Gradients dx,

Forward Pass

Backward Pass

Compute

Gradients dx3
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Gradients

UPdatede

Average
Gradients dx

Update Weights
Whnew = W — adx

Parameter Server

DEEP LEARNING ONE - 62

=

Generally: using multiple GPUs for training a model is very common.
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Layer normalization

Batch Normalization Layer Normalization
o The statistics (mean and variance) baten | pemeforal batch
are computed across all channels and ~ —— mean s ——
spatial dimensions. i =[]
o The statistics are independent of the ééé é é é :Ej é:
batch. o] | [5] [ Bilo|E
o This layer was initially introduced to 1@%%% feature Gimensions

handle vectors (mostly the RNN
outputs).

Layer Norm

o Layer normalization performs exactly
the same computation at training and sttt
test times

Channels C

A
>

Mini-Batch Samples N

Layer Normalization, Ba, Kiros, Hinton, 2016
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Layer normalization (LN)

o I runs over mini-batch samples, j over the feature dimensions

1 _
U; < Ez}ll Xij ‘mean over features]

1 L
0f ;Z}n:ﬂxi — ugp)? [variance over features]

~ Xi—Hi

X; « [normalize input]
/al-2+e
yi<yx;+ 0 [scale and shift input]

Layer Normalization, Ba, Kiros, Hinton, 2016
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Instance normalization (IN)

o Similar to layer normalization but per channel per training example.

o Basic idea: network should be agnostic to the contrast of the original image.
o The statistics are computed only across the features’ spatial dimensions.

o Literally, we just remove the sum samples compared to BatchNorm

o Originally proposed for style transter
> Not as good in image classification

Instance Norm

Merged Spatial
Dimensions (H,W)

Channels C

N
>

Instance Normalization: The Missing Ingredient for Fast Stylization, Ulyanov, Vedaldi, Lempitsky, 2017

Mini-Batch Samples N

lg,l UNIVERSITY OF AMSTERDAM DEEP LEARNING ONE - 65 VISLab



Group normalization (GN)

o Divides the channels into groups and computes statistics within each group.

o Same as instance norm but over groups of channels
- Between layer normalization and instance normalization
o # group = # channels -> instance norm
o # group =1 -> layer norm

o Better than batch normalization for small batches (e.g., <32)
- Competitive for larger batches

o Usetul for object detection/segmentation networks o0 Normataaton
> rely on high resolution images A
- cannot have big mini-batches orged Spetl

Dimensions (HW)

o Grouped convs useful for larger networks, c.f. ResNeXt

Channels C

Group Normalization, We, He, 2018 >

Mini-Batch Samples N
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A comparison of different normalizations

val error
o RestNet-50 Or
—Batch Norm (BN)
Batch size = 32 51 — Layer Norm (LN)
° chsize =3 — Instance Norm (IN)
. . 50 -
o But with some fixes, Group Norm (GN)
LayerNorm performs 4}
S
on par/better. Sl
5 IN
35
LN
BN |
25
20 | | | | ! 1 l | | |
0 10 20 30 40 50 60 70 80 90 100
epochs
Link
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Weight normalization

o Instead of normalizing activations, normalize weights

o The idea is to decouple the length from the direction of the weight vector and
hence reparameterize the network to speed up the training.

o Re-parameterize weights
4
w=g—-
vl

o Similar to dividing by standard deviation in batch normalization

o Can be combined with mean-only batch normalization
o Subtract the mean (but not divide by the standard deviation)

- Then, apply weight normalization

Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks, Salimans, Kingma, 2016
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Hyperparameters

Hyperparameters

n_layers =3
n_neurons = 512
learning_rate = 0.1

n_layers =3
n_neurons = 1024
learning_rate = 0.01

n_layers =5
n_neurons = 256
learning rate = 0.1

22

Parameters
&5 Weights
> optimization
> Wejghts _
> optimization
>~ We_ights '
- optimization

22

Score

80%

92%



Hyperparameters

‘@ John David Pressman
Prompt: a surreal illustration of professors and students walking through a

= maze as t.hey learn discover artificial intelligence through grad student
the Stuff that Cannot be descent in the style of escher
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Learning rate

o The right learning rate 7, very important for fast convergence
> Too strong = gradients overshoot and bounce
- Too weak = slow training

o Learning rate per weight is often advantageous
- Some weights are near convergence, others not

Too low Just right Too high

1(0) 1(0) 1)

) 0 6
A small learning rate The optimal learning ' Too large of a learning rate
requires many updates rate swiftly reaches the causes drastic updates

befqre reach!ng the minimum point which lead to divergent
minimum point “behaviors
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Convergence

o The step sizes theoretically should satisty the following [Robbins—-Monro]
Y'ne=c and XPn; <o

o Intuitively,
o The first term ensures that search will explore enough

- The second term ensures convergence
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Learning rate schedules

o Constant
> Learning rate remains the same for all epochs g

o Step decay

> Decrease every T number of epochs
or when validation loss stopped decreasing

No
1+€t

o Inverse decay n; =

o Exponential decay n, = nge

o Cosine decay! '

o Often step decay preferred
 simple, intuitive, reusable, works well

o + warmup of learning rate common.
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In practice

o Try several log-spaced values 107%,1072,1073, ... on a smaller set

o Then, you can narrow it down from there around where you get the lowest
validation error

o You can decrease the learning rate every T (e.g., 100) training set epochs
> Although this highly depends on your data

loss

very high learning rate

low learning rate

high learning rate

T~ Picture credit:

Stanford Course

good learning rate

epoch
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http://cs231n.github.io/neural-networks-2/

You run your model twice, once it gets the blue curve, once the red curve.
What do you do?

1) Check the individual values of the gradients

2) Check batch at which loss exploded

3) Try increasing batch-size or lowering the learning rate
4) All of the above

https://stackoverflow.com/questions/58633177 /why-theres-a-big-jump-up-of-the-loss-curve-during-the-training
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Dropout rate

o Start with a relatively small rate, like 20-50%
o If too high, your network will underfit

o With dropout you can also try larger neural networks
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Batch size

o If possible, start with at least 32
o Generally, as big as your GPU memory fits
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Designing CNNs to become even better. (

Don't try this at home

Table 2: Ingredients and hyper-parameters used for ResNet-50 training in different papers. We

compare existing training procedures with ours.

| Previous approaches Ours
Procedure — ResNet PyTorch FixRes DeiT FAMS (x4) Al A2 A3
Reference [13] [1] [48] [45] [10]
Train Res 224 224 224 224 224 224 224 160
Test Res 224 224 224 224 224 224 224 224
Epochs 90 90 120 300 400 600 300 100
# of forward pass 450k 450k 300k 375k 500k 375k 188k 63k
Batch size 256 256 512 1024 1024 2048 2048 2048
Optimizer SGD-M SGD-M SGD-M AdamW SGD-M LAMB LAMB LAMB
LR 0.1 0.1 02 1x107° 20 5x107% 5x107% 8x107*
LR decay step step step cosine step cosine cosine cosine
decay rate 0.1 0.1 0.1 R 0.02t/400 R - _
decay epochs 30 30 30 - 1 - - -
Weight decay 10~ 104 10~ 0.05 10~ 0.01 0.02 0.02
Warmup epochs 5 5 5 5 5
Label smoothing & 0.1 0.1 0.1
Dropout
Stoch. Depth 0.1 0.05 0.05
Repeated Aug v v v v
Gradient Clip.
H. flip v v v v 4 4 4 v
RRC v v v 4 4 4 4
Rand Augment 9/0.5 7/0.5 7/0.5 6/0.5
Auto Augment v
Mixup alpha 0.8 0.2 0.2 0.1 0.1
Cutmix alpha 1.0 1.0 1.0 1.0
Erasing prob. 0.25
ColorJitter v v
PCA lighting v
SWA v
EMA
Test crop ratio | 0875 0.875 0.875 0.875 0875 | 095 0.95 0.95
CEloss 4 4 4 v 4
BCE loss v v v
Mixed precision | v v | v 4 v
Top-1 acc. | 75.3% 76.1% 77.0% 78.4% 79.5% | 80.4% 79.8% 78.1%

ResNet strikes back: An improved training

procedure in timm. Wightman et al. 2021
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ResNet-50/200
Macro stage ratio
Design [ “patchify” stem
—  depth conv %22
ResNeXt
- width T
Inverted inverting dims
Bottleneck 9

— move T d. conv

kernel sz. » 5

GFLOPs

L0 R

he
o

o
)

N N X
A »

Large kernel sz. » 7 80.6
Kernel
- kernel sz. - 11 m
— ReLU—GELU
fewer activations
Micro
Design fewer norms
BN — LN
L- sep.d.s. conv
ConvNeXt-T/B
Swin-T/B
ImageNet
Top1 Acc (%) 78 80

A ConvNet for the 2020s. Liu et al.

CVPR 2022
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Number of layers and neurons

o For a new problem, generally start from moderate sizes
o 3-5 layers
> A few dozens neurons at most
- When things check out, start increasing complexity

o For a known problem, e.g., image classification, reuse hyperparameters
- The one suggested by the model of choice are usually decent

Generally: do not come up with new architectures. Use the existing ones and tailor to needs.
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Babysitting Deep Nets

o Establish baselines
o Check that in the first round you get loss that corresponds to random guess

o Check network with few samples
o Turn off regularization. You should predictably overfit and get a loss of 0
o Turn on regularization. The loss should be higher than before

o Always a separate validation set for hyper-parameter tuning
o Compare the training and validation losses - there should be a gap, not too large

o Preprocess the data (at least to have 0 mean)

o Initialize weights based on activations functions Xavier or Kaiming initialization
o Use regularization (¢,-regularization, dropout, ...)

o Use batch normalization

o Prefer residual connections, they make a difference

o Use an experiment manager like tensorboard or Neptune or wand

o Track further metrics that are relevant to the problem at hand

lgl UNIVERSITY OF AMSTERDAM DEEP LEARNING ONE - 81 VISLab



Logging tools

Sweep: shape_sweep B>  Results of Hyperparameter Sweep 5

Q o

n_params

8 u

2e+5
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)
o/
|
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©® @ lucky-sweej 0.981 L]
ith et
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N deva

@ @ atomic-swe  0.9795 3esd
@ © drawn-swee  0.9793

@ @ proud-swee 0.9784
le+4
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Q search
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Babysitting Deep Nets

o One of the most important skills

o Further reading:
o http://karpathy.github.i0/2019/04/25/recipe/
o https://phillipi.github.io/6.s898/materials/slides/8_hackers_guide.pdf
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http://karpathy.github.io/2019/04/25/recipe/
https://phillipi.github.io/6.s898/materials/slides/8_hackers_guide.pdf

Reading material

o Deep Learning Book: Chapter 8, 11

o Efficient Backprop

o How Does Batch Normalization Help Optimization?

o https://medium.com/paperspace/intro-to-optimization-in-deep-learning-
momentum-rmsprop-and-adam-8335f15fdee?

o http://ruder.io/optimizing-gradient-descent/

o https://github.com/Jaewan-Yun/optimizer-visualization

o https://blog.paperspace.com/intro-to-optimization-in-deep-learning-gradient-
descent/
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http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
https://arxiv.org/abs/1805.11604
https://medium.com/paperspace/intro-to-optimization-in-deep-learning-momentum-rmsprop-and-adam-8335f15fdee2
http://ruder.io/optimizing-gradient-descent/
https://github.com/Jaewan-Yun/optimizer-visualization
https://blog.paperspace.com/intro-to-optimization-in-deep-learning-gradient-descent/

o Advanced optimizers
o Initialization

o Normalization

o Regularization

o Hyperparameters

Reading material
o Chapter 8, 11
o And the papers mentioned in the slide



