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o Backpropagation 

o In 

o More

o Detail

o (kidding)

Lecture overview
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o Normalization

o Regularization

o Hyperparameters

Lecture overview



Regularization



Why might the left 
be better?

Why might the 
right be better?
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Newton:

What if nature is fundamentally non-linear / complicated?

Digression: Gravitation

Einstein:
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o Point Estimation
◦ The single “best” prediction of some quantity of interest, which can be a

single parameter or a vector of parameters.
◦ Point estimate of the relationship between input and target variables is

referred to as function estimators.
◦ A point estimator or statistic is any function of the data: 

where are independent and identically distributed.

o A good estimator is a function whose output is close to the true 
underlying θ that generated the data

Bias-variance tradeoff

CHAPTER 5. MACHINE LEARNING BASICS

(i.i.d.) data points. A or is any function of the data:point estimator statistic

θ̂m = (g x(1) , . . . ,x( )m ). (5.19)

The definition does not require that g return a value that is close to the true
θ or even that the range of g is the same as the set of allowable values of θ.
This definition of a point estimator is very general and allows the designer of an
estimator great flexibility. While almost any function thus qualifies as an estimator,
a good estimator is a function whose output is close to the true underlying θ that
generated the training data.

For now, we take the frequentist perspective on statistics. That is, we assume
that the true parameter value θ is fixed but unknown, while the point estimate
θ̂ is a function of the data. Since the data is drawn from a random process, any
function of the data is random. Therefore θ̂ is a random variable.

Point estimation can also refer to the estimation of the relationship between
input and target variables. We refer to these types of point estimates as function
estimators.

Function Estimation As we mentioned above, sometimes we are interested in
performing function estimation (or function approximation). Here we are trying to
predict a variable y given an input vector x. We assume that there is a function

f (x) that describes the approximate relationship between y and x. For example,
we may assume that y = f(x) + s, where s stands for the part of y that is not
predictable from x. In function estimation, we are interested in approximating
f with a model or estimate f̂. Function estimation is really just the same as
estimating a parameter θ; the function estimator f̂ is simply a point estimator in
function space. The linear regression example (discussed above in section ) and5.1.4
the polynomial regression example (discussed in section ) are both examples of5.2
scenarios that may be interpreted either as estimating a parameter w or estimating
a function f̂ ymapping from tox .

We now review the most commonly studied properties of point estimators and
discuss what they tell us about these estimators.

5.4.2 Bias

The bias of an estimator is defined as:

bias(θ̂m) = (E θ̂m) − θ (5.20)
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5.3.1 Cross-Validation

Dividing the dataset into a fixed training set and a fixed test set can be problematic

if it results in the test set being small. A small test set implies statistical uncertainty
around the estimated average test error, making it difficult to claim that algorithm
A works better than algorithm on the given task.B

When the dataset has hundreds of thousands of examples or more, this is not a
serious issue. When the dataset is too small, are alternative procedures enable one
to use all of the examples in the estimation of the mean test error, at the price of
increased computational cost. These procedures are based on the idea of repeating
the training and testing computation on different randomly chosen subsets or splits
of the original dataset. The most common of these is the k-fold cross-validation
procedure, shown in algorithm , in which a partition of the dataset is formed by5.1
splitting it into k non-overlapping subsets. The test error may then be estimated

by taking the average test error across k trials. On trial i, the i -th subset of the
data is used as the test set and the rest of the data is used as the training set. One
problem is that there exist no unbiased estimators of the variance of such average
error estimators (Bengio and Grandvalet 2004, ), but approximations are typically
used.

5.4 Estimators, Bias and Variance

The field of statistics gives us many tools that can be used to achieve the machine
learning goal of solving a task not only on the training set but also to generalize.
Foundational concepts such as parameter estimation, bias and variance are useful

to formally characterize notions of generalization, underfitting and overfitting.

5.4.1 Point Estimation

Point estimation is the attempt to provide the single “best” prediction of some
quantity of interest. In general the quantity of interest can be a single parameter
or a vector of parameters in some parametric model, such as the weights in our
linear regression example in section , but it can also be a whole function.5.1.4

In order to distinguish estimates of parameters from their true value, our
convention will be to denote a point estimate of a parameter byθ θ̂.

Let {x(1) , . . . ,x( )m } be a set of m independent and identically distributed
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o Bias
◦ “The difference between this estimator’s expected value and the true 

value of the parameter being estimated” .
◦ The bias error is an error from erroneous assumptions in the 

learning algorithm. 

o Variance
◦ The amount that the estimate of the target function will change if 

different training data was used.
◦ The variance is an error from sensitivity to small fluctuations in the 

training set.

Bias-variance tradeoff
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o High bias can cause an algorithm to miss the relevant relations between features and 
target outputs (underfitting), e.g., linear models.

o High variance may result from an algorithm modelling the random noise in the 
training data (overfitting), e.g., nonlinear models.

Bias-variance tradeoff

Link

https://images.app.goo.gl/Axc76P5KNoqK7udn6
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o One of the most important aspects when training neural networks 
is avoiding overfitting.
◦ Overfitted models fail on new data from the same problem domain. 
◦ Caused by noise in the training data that the neural network picks up during 

training and learns it as an underlying concept of the data.

Overfitting

underfitting overfittinggood fit
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o Why does the neural network pick up that noise in the first place?
◦ the complexity of this network is too high (for the problem).
◦ is able to pick up and learn patterns (noise) in the data.
◦ try to model each data sample, while not learning underlying true function
◦ New arbitrary samples generated with the true function would have a high 

distance to the fit of the model (remember how non-linear neural networks 
are!)

Overfitting
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o Neural networks typically have thousands, if not millions of parameters
◦ Usually, the dataset size smaller than the number of parameters

o Overfitting is a grave danger

o Overfitting causes the neural network model to perform very well during 
training, but the performance gets much worse during inference time when 
faced with brand new data.

o To prevent overfitting or a high variance we must use something that is called 
regularization.

Overfitting
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Overfitting: how “powerful” are neural networks?

Understanding deep learning requires rethinking generalization. Zhang et al. 2016
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Update 2019: Double Descent

o a) no “usual” bias-variance trade-off curve: 
easy

o b) “usual” bias-variance trade-off curve 
…  except test error goes down again   

and ends up lower?!

o Same for c) d).

o What’s going on?

o Smoothness, regularisation

The MNIST-1D dataset has 40 dimensions and here 10K samples
Belkin, M., Hsu, D., Ma, S., & Mandal, S. (2019) Reconciling modern machine-learning practice and the 
classical bias–variance trade- off. Proceedings of the National Academy of Sciences 
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This matters, because we’re seeing that larger 
and larger models are performing much 
better even at less compute (though we’re not 
in the DD regime) -> 

Double-descent: Smoothness from bigger models

Scaling Laws for Neural Language Models. Kaplan et al. 2020
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o In practice, we (so far) rarely see this

o Why?
◦ Not in the double-descent regime
◦ “Hoping” for more neurons to solve the problem doesn’t solve it
◦ Problems actually even more higher-dimensional because of augmentations

o So?
◦ We need regularisation techniques (also used for those huge language 

models!)

Double-descent in practice?
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o Regularization refers to a set of different techniques that lower the complexity 
of a neural network model during training, and thus prevent the overfitting.

o Possible regularization methods
◦ ℓ!-regularization
◦ ℓ"-regularization
◦ Early stopping
◦ Dropout
◦ anything…

Regularization
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o The L2 regularization is the most common type of all regularization 
techniques 
◦ commonly known as weight decay or ridge regression (in the linear case).

o The regularization term Ω is defined as the Euclidean Norm (or L2 norm) of 
the weight matrices
◦ which is the sum over all squared weight values of a weight matrix.

o L2 regularization encourages the weight values towards zero

o A Gaussian prior on weights

1) ℓ!-regularization 

1
2%!

𝑤! "
"
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o The loss function with ℓ!-regularization:

w∗ ← argmin( *
(*,,)⊆(/,0)

ℒ(𝑦, 𝑎1 𝑥;𝑤",…,3 ) +
𝜆
2*4

𝑤4 !
!

o The ℓ!-regularization is added to the gradient descent update rule

𝑤56" = 𝑤5 − 𝜂5 𝛻7ℒ + 𝜆𝑤4 ⟹
𝑤56" = 1 − 𝜆𝜂5 𝑤 5 − 𝜂5𝛻7ℒ

o 𝜆 is usually about 108", 108!

1) ℓ!-regularization 

“Weight decay”, because 
weights get smaller
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o L1 regularization, also knows as Lasso regression
◦ The sum of the absolute values of the weight parameters in a weight matrix

1
2
*

4
|𝑤4|

◦ The regularization term does not scale linearly, contrary to L2 regularization, 
but it’s a constant factor with an alternating sign.

◦ A prior of an isotropic Laplacian distribution on weights.

2) ℓ"-regularization 
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o ℓ"-regularization is one of the most important regularization techniques

w∗ ← argmin( *
(*,,)⊆(/,0)

ℒ(𝑦, 𝑎1 𝑥;𝑤",…,3 ) +
𝜆
2*4

|𝑤4|

o Also ℓ"-regularization is added to the gradient descent update rule

𝑤56" = 𝑤5 − 𝜂5 𝛻7ℒ + 𝜆
𝑤 5

sgn(𝑤 5 )

o ℓ"-regularization à sparse weights
◦ 𝜆 ↗ à more weights become 0

2) ℓ"-regularization 

Sign function
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o The estimates of W1 and W2 are given by the first point where the ellipse 
intersects with the green constraint area.

o The other green constrained parts have worse losses

Why do L1 and L2 Regularizations work?

ℓ#-regularization ℓ"-regularization 

Think of an “equal cost” line H_0
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Alpha == our lambda
https://scikit-learn.org/stable/modules/linear_model.html

Effect: linear regression example
L2 L1 and positive L1
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o Monitor performance on a separate validation set

o Training the network will decrease training error, as well validation error 

o When validation error starts increasing, it is quite likely that the network 
starts to overfit.

3) Early stopping

CHAPTER 7. REGULARIZATION FOR DEEP LEARNING
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Figure 7.3: Learning curves showing how the negative log-likelihood loss changes over
time (indicated as number of training iterations over the dataset, or epochs). In this
example, we train a maxout network on MNIST. Observe that the training objective
decreases consistently over time, but the validation set average loss eventually begins to
increase again, forming an asymmetric U-shaped curve.

greatly improved (in proportion with the increased number of examples for the
shared parameters, compared to the scenario of single-task models). Of course this
will happen only if some assumptions about the statistical relationship between
the different tasks are valid, meaning that there is something shared across some
of the tasks.

From the point of view of deep learning, the underlying prior belief is the
following: among the factors that explain the variations observed in the data
associated with the different tasks, some are shared across two or more tasks.

7.8 Early Stopping

When training large models with sufficient representational capacity to overfit
the task, we often observe that training error decreases steadily over time, but
validation set error begins to rise again. See figure for an example of this7.3
behavior. This behavior occurs very reliably.

This means we can obtain a model with better validation set error (and thus,
hopefully better test set error) by returning to the parameter setting at the point in
time with the lowest validation set error. Every time the error on the validation set
improves, we store a copy of the model parameters. When the training algorithm
terminates, we return these parameters, rather than the latest parameters. The
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o We can obtain a model with better validation set error 
◦ The parameter setting at time point with the lowest validation set error. 
◦ The models at this stage have low variance and generalize the data well. 
◦ Further training would increase the variance of the model and lead to 

overfitting.

o This strategy is Early Stopping.
◦ Commonly used, effectiveness and simplicity.
◦ Need a validation set (different from test set!)
◦ Need to maintain a copy of the best parameters. 
◦ Either alone or with other regularization strategies. 

3) Early stopping
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o We can think of early stopping is as an efficient hyperparameter selection: 
◦ The number of training steps is just another hyperparameter. 
◦ Most hyperparameters that control model capacity have such a U-shaped 

validation set performance curve.
◦ When do we know when we’re in the valley?

3) Early stopping

CHAPTER 5. MACHINE LEARNING BASICS
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Generalization error

Figure 5.3: Typical relationship between capacity and error. Training and test error
behave differently. At the left end of the graph, training error and generalization error
are both high. This is the underfitting regime. As we increase capacity, training error
decreases, but the gap between training and generalization error increases. Eventually,
the size of this gap outweighs the decrease in training error, and we enter the overfitting
regime, where capacity is too large, above the optimal capacity.

the concept of non-parametric models. So far, we have seen only parametric
models, such as linear regression. Parametric models learn a function described
by a parameter vector whose size is finite and fixed before any data is observed.
Non-parametric models have no such limitation.

Sometimes, non-parametric models are just theoretical abstractions (such as
an algorithm that searches over all possible probability distributions) that cannot
be implemented in practice. However, we can also design practical non-parametric
models by making their complexity a function of the training set size. One example

of such an algorithm is nearest neighbor regression. Unlike linear regression,
which has a fixed-length vector of weights, the nearest neighbor regression model
simply stores the X and y from the training set. When asked to classify a test
point x , the model looks up the nearest entry in the training set and returns the
associated regression target. In other words, ŷ = yi where i = argmin ||Xi,: − ||x 2

2.
The algorithm can also be generalized to distance metrics other than the L2 norm,
such as learned distance metrics ( , ). If the algorithm isGoldberger et al. 2005
allowed to break ties by averaging the yi values for allXi,: that are tied for nearest,
then this algorithm is able to achieve the minimum possible training error (which
might be greater than zero, if two identical inputs are associated with different
outputs) on any regression dataset.

Finally, we can also create a non-parametric learning algorithm by wrapping a
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o For a simple linear model with a quadratic error function and simple gradient 
descent, early stopping is equivalent to ℓ!-regularization.

o 𝛼 is the regularization constant, 𝜏 is no. of iterations, and ε is the learning rate.

o Increasing no. of epochs/iterations 𝜏 is equivalent to reducing the 
regularization constant 𝛼.

Why does early-stopping work as regularization?
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o Rather than stopping at the point that minimizes the cost, early stopping results in 
the trajectory stopping at an earlier point . 

o Early stopping has the advantage over weight decay that early stopping 
automatically determines the correct “amount of regularization” while weight decay 
requires many training experiments with different values of its hyperparameter. 

Why does early-stopping work as regularization?
CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

w1
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Figure 7.4: An illustration of the effect of early stopping. (Left)The solid contour lines
indicate the contours of the negative log-likelihood. The dashed line indicates the trajectory
taken by SGD beginning from the origin. Rather than stopping at the point w∗ that
minimizes the cost, early stopping results in the trajectory stopping at an earlier point w̃.
(Right)An illustration of the effect of L2 regularization for comparison. The dashed circles
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We are going to study the trajectory followed by the parameter vector during
training. For simplicity, let us set the initial parameter vector to the origin,3 that
is w (0) = 0. Let us study the approximate behavior of gradient descent on J by
analyzing gradient descent on Ĵ :

w
( )τ = w( 1)τ− − ∇s wĴ(w( 1)τ− ) (7.35)

= w( 1)τ− − sH w( ( 1)τ− −w ∗) (7.36)

w
( )τ −w∗ = ( )(I H− s w

( 1)τ− −w∗). (7.37)

Let us now rewrite this expression in the space of the eigenvectors ofH , exploiting
the eigendecomposition of H: H = Q QΛ �, whereΛ is a diagonal matrix and Q
is an orthonormal basis of eigenvectors.

w
( )τ −w∗ = (I Q Q− s Λ �)(w( 1)τ− −w∗) (7.38)

Q
�(w( )τ −w∗) = ( )I − sΛ Q� (w( 1)τ− −w∗ ) (7.39)

3
For neural networks, to obtain symmetry breaking between hidden units, we cannot initialize

all the parameters to 0, as discussed in section . However, the argument holds for any other6.2

initial value w
(0)
.
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w
( )τ = w( 1)τ− − ∇s wĴ(w( 1)τ− ) (7.35)
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o The co-adaptation phenomenon
◦ Co-adaptation refers to when different hidden units in a neural networks 

have highly correlated behaviour.
◦ It is common that some of the connections will have more predictive 

capability than the others.
◦ These powerful connections are learned more while the weaker ones are 

ignored.
◦ Over many iterations, only a fraction of the node connections is trained. And 

the rest stop participating.

o Dropout resolves this co-adaptation issue.

4) Dropout: the problem it addresses
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o Bagging
◦ A technique for reducing generalization error by combining several models.
◦ To train several different models separately, then have all of the models vote 

on the output for test examples. 
◦ Techniques employing this strategy are known as ensemble methods. 

o Ensemble
◦ Different kinds of models.
◦ Different initializations.
◦ Using a different algorithm.
◦ Constructing different datasets. 

4) Dropout: why does it work?
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o Makes bagging practical for ensembles of very many neural nets. 
◦ Bagging seems impractical for a large neural network.
◦ Training and evaluating is costly in terms of runtime and memory. 

o Dropout provides an inexpensive approximation to training and 
evaluating a bagged ensemble of exponentially many neural 
networks. 

4) Dropout: why does it work? 
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o During training randomly set activations to 0
◦ Neurons sampled at random from a Bernoulli distribution with 𝑝 (eg, 𝑝 = 0.5)
◦ Neuron activations reweighted by 1/𝑝

o During testing all neurons are used

o Benefits
◦ Reduces complex co-adaptations between neurons
◦ Every neuron becomes more robust
◦ Decreases overfitting

o Not super common for large scale datasets. 
However in different form more common: “DropPath/stoch. Depth”

4) Dropout: how is it implemented?
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o Effectively, a different architecture for every input batch during training

Dropout

Original model



UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES                                                                                    DEEPER INTO DEEP 
LEARNING AND OPTIMIZATIONS - 34

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 34 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 34 VISLabDEEP LEARNING ONE - 34 VISLab

o Effectively, a different architecture for every input batch during training

Dropout

Batch 1
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o Effectively, a different architecture for every input batch during training

Dropout

Batch 1
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o Effectively, a different architecture for every input batch during training

Dropout

Batch 2
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o Effectively, a different architecture for every input batch during training

Dropout

Batch 2
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o Effectively, a different architecture for every input batch during training

Dropout
CHAPTER 7. REGULARIZATION FOR DEEP LEARNING
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Figure 7.6: Dropout trains an ensemble consisting of all sub-networks that can be
constructed by removing non-output units from an underlying base network. Here, we
begin with a base network with two visible units and two hidden units. There are sixteen
possible subsets of these four units. We show all sixteen subnetworks that may be formed
by dropping out different subsets of units from the original network. In this small example,
a large proportion of the resulting networks have no input units or no path connecting
the input to the output. This problem becomes insignificant for networks with wider
layers, where the probability of dropping all possible paths from inputs to outputs becomes
smaller.
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o Bagging
◦ The models are all independent 
◦ Each model is trained to convergence on its respective training set. 

o Dropout
◦ The models share parameters, with each model inheriting a different subset 

of parameters from the parent neural network. 
◦ Typically, most models are not explicitly trained at all.
◦ The training set encountered by each sub-network is indeed a subset of the 

original training set sampled with replacement. 

Dropout vs. Bagging
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o Dropout trains not just a bagged ensemble of models, but an ensemble of 
models that share hidden units. 

o Each hidden unit must be able to perform well regardless of which other 
hidden units are in the model. 

o Hidden units must be prepared to be swapped and interchanged between 
models. 

o Dropout thus regularizes each hidden unit to be not merely a good feature but a 
feature that is good in many contexts. 

Dropout beyond Bagging
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o The best way to make a machine learning model generalize better is to 
train it on more data. (see: ”The unreasonable effectiveness of data”)

◦ Data* is limited in practice
◦ One way is to create fake data – Data Augmentation**

o Your neural network is only as good as the data you feed it.

o By performing augmentation, we can prevent neural networks from learning 
or memorizing irrelevant patterns, essentially boosting overall performance.

* Labeled data
** Not that trivial. Augmentations are more than just fake data. See lecture 13 on self-supervised learning 

5) Data augmentation
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o Augmentation techniques in vision
◦ Flip
◦ Rotation
◦ Scale
◦ Crop
◦ Translation
◦ Gaussian noise

o Be aware of label change
◦ “b” and “d”
◦ “6” and “9”

Data augmentation

Link

o In NLP
◦ Backtranslation

◦ Synonym replacement
◦ Random insertion
◦ Random deletion
◦ Random swapping

https://nanonets.com/blog/data-augmentation-how-to-use-deep-learning-when-you-have-limited-data-part-2/
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One note about backtranslation though:
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Common computer vision augmentations visualised
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o Is effectively another hyperparameter, ie you cannot run SGD on it 
to find best augmentations.
◦But Reinforcement Learning: AutoAugment, RandAugment etc.

o Hard to tune & domain dependent: 
◦ Eg, What Should Not Be Contrastive in Contrastive Learning. Xiao et al. ICLR 2021: if you want to identify specific 

flower types… randomly changing the color as augmentation is not so good.

o One interpretation: a way to incorporate “domain knowledge” into 
the network. How else could we say that all these below are 
“same”?

Data augmentation
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o It really works. Major part of state of the art training pipelines

Data augmentation
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o Noise robustness
◦ adding noise to weights - uncertainty
◦ adding noise to outputs - label smoothing

o Semi or self-supervised learning
◦ introducing a particular form of prior belief about the solution
◦ smoothness, generaliseability

o Multi-task learning
◦ shared the input and parameters – improve the statistical strength
◦ require statistical relationship between tasks

Other regularizations
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o UDL book, Chapter 9

Various ways to regularise



Normalization
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o Normalization 
◦ The data pre-processing to bring the numerical data to a common scale 

without distorting its shape.
◦ The reason is partly to ensure that our model can generalize appropriately.

o This ensures that all the feature values are now on the same scale.

Data preprocessing

Link

https://towardsdatascience.com/batch-norm-explained-visually-how-it-works-and-why-neural-networks-need-it-b18919692739
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o Transforming the input to zero-mean, unit variance
◦ Assume: Input variables follow a Gaussian distribution (roughly)
◦ Subtract input by the mean
◦ Optionally, divide by the standard deviation

𝑁 𝜇, 𝜎! → 𝑁 0, 1

Eg ImageNet: mean = [0.485, 0.456, 0.406] and std = [0.229, 0.224, 0.225]

Normalizing Input Data

𝑥 𝑥 − 𝜇 𝑥 − 𝜇
𝜎

Picture credit: Stanford Course

http://cs231n.github.io/neural-networks-2/
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o Batch normalization

o Layer normalization

o Instance normalization

o Group normalization

o Weight normalization

Normalizing intermediate layers

Batch Norm Layer Norm Instance Norm Group Norm



UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES                                                                                    DEEPER INTO DEEP 
LEARNING AND OPTIMIZATIONS - 53

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 53 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 53 VISLabDEEP LEARNING ONE - 53 VISLab

o The activations from the previous layer are simply the inputs to this layer.

o Batch normalization is a process to make neural networks faster and more 
stable through adding extra layers in a deep neural network.

o Takes place in batches, not as a single input.

o This normalization is applied typically before activation. 

Batch normalization
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o Normalize the layer inputs with batch normalization
◦ Normalize 𝑎4 ∼ 𝑁(0, 1)
◦ Followed by affine transformation

𝑎4 ← 𝛾𝑎4 + 𝛽

o The parameters 𝛾 and 𝛽 are trainable
o Used for re-scaling (𝛾) and shifting (𝛽) of the vector values.

o Ensure the optimal values of γ and β are used.

o Enable the accurate normalization of each batch.

Batch normalization

ℒ

Batch normalization

𝑎"

𝑎!

𝑥
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o 𝑖 runs over mini-batch samples, j over the feature dimensions

𝜇> ←
"
?
∑@A"? 𝑥@> [compute mini-batch mean]

𝜎>! ←
"
?
∑@A"? 𝑥@> − 𝜇>

! [compute mini-batch variance]

N𝑥@> ←
*!"8B"

C"
#6D

[normalize input]

N𝑥@> ← 𝛾N𝑥@> + 𝛽 [scale and shift input]

Batch normalization – The algorithm

Trainable parameters
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o Internal covariate shift ?
◦ The change in the distribution of layer inputs caused by updates to the 

preceding layers.
◦ Little concrete evidence supporting it.
◦ Seems no link between the performance gain of BN and the reduction of 

internal covariate shift. 

How does batch normalization help optimization? 

Santurkar, et al., How Does Batch Normalization Help Optimization?, NeurIPS, 2018

Deep linear networks (25 layers)
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o The impact of BatchNorm on the stability of the loss 
◦ It makes loss landscape significantly smoother.
◦ Improvement in the Lipschitzness of the loss function.
◦ It makes gradients of the loss more Lipschitz too.
◦ it makes the gradients more reliable and predictive.

o Recently: also networks without normalisation, but careful initialisation [High-Performance Large-Scale 
Image Recognition Without Normalization. Brock et al. 2021]

How does batch normalization help optimization? 

Santurkar, et al., How Does Batch Normalization Help Optimization?, NeurIPS, 2018
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o Networks train faster 
o Allows higher learning rates
o Makes weights easier to initialize 
o Makes more activation functions viable 
o The added noise reduces overfitting
o Simplifies the creation of deeper networks
o Provides a bit of regularization
o May give better results overall

Benefits of Batch normalization
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Quiz:

How would you use batch normalization at test time?

A) go through the dataset in a predefined order
B) go through the dataset in a random order
C) go through the dataset in a random order 
multiple times
D) simply skip it
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o How do we ship the Batch Norm layer after 
training?
◦ We might not have batches at test time
◦ Batches are random? -> not reproducible

o Usually: keep a moving average of the mean 
and variance during training
◦ Plug them in at test time
◦ To the limit, the moving average of mini-batch 

statistics approaches the batch statistics

Batch normalization at test time

𝜇ℬ ←
1
𝑚
*
@A"

?

𝑥@

𝜎ℬ ←
1
𝑚
*
@A"

?

𝑥@ − 𝜇ℬ !

P𝑥@ ←
𝑥@ − 𝜇ℬ

𝜎ℬ! + 𝜀

P𝑦@ ← 𝛾P𝑥@ + 𝛽
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o Requires large mini-batches
◦ Cannot work with mini-batch of size 1 (𝜎 = 0)
◦ Performance is sensitive to the batch size
◦ Very memory intense, all the batch statistics must be stored in the layer.
◦ Discrepancy between training and test data
◦ Breaks the independence between training examples in the minibatch
◦ Not applicable to online learning
◦ Can limit model capability (zero-mean)

o Awkward to use with recurrent neural networks
◦ Must interleave it between recurrent layers
◦ Also, store statistics per time step

o Often the reason for bugs
o There are more reasons.

Disadvantages of batch normalization
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Disadvantages of batch normalization with distributed training

Generally: using multiple GPUs for training a model is very common.
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o The statistics (mean and variance) 
are computed across all channels and 
spatial dimensions.

o The statistics are independent of the 
batch. 

o This layer was initially introduced to 
handle vectors (mostly the RNN 
outputs).

o Layer normalization performs exactly 
the same computation at training and 
test times

Layer normalization

Layer Normalization, Ba, Kiros, Hinton, 2016
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o 𝑖 runs over mini-batch samples, j over the feature dimensions

𝜇@ ←
"
?
∑>A"? 𝑥@> [mean over features]

𝜎@! ←
"
?
∑>A"? 𝑥@ − 𝜇ℬ ! [variance  over features]

P𝑥@ ←
*!8B!

C!
#6D

[normalize input]

P𝑦@ ← 𝛾P𝑥@ + 𝛽 [scale and shift input]

Layer normalization (LN)

Layer Normalization, Ba, Kiros, Hinton, 2016
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o Similar to layer normalization but per channel per training example.

o Basic idea: network should be agnostic to the contrast of the original image.

o The statistics are computed only across the features’ spatial dimensions.

o Literally, we just remove the sum samples compared to BatchNorm

o Originally proposed for style transfer
◦ Not as good in image classification

Instance normalization (IN)

Instance Normalization: The Missing Ingredient for Fast Stylization, Ulyanov, Vedaldi, Lempitsky, 2017
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o Divides the channels into groups and computes statistics within each group.
o Same as instance norm but over groups of channels

◦ Between layer normalization and instance normalization
◦ # group = # channels -> instance norm
◦ # group = 1 -> layer norm

o Better than batch normalization for small batches (e.g., <32)
◦ Competitive for larger batches

o Useful for object detection/segmentation networks
◦ rely on high resolution images 
◦ cannot have big mini-batches

o Grouped convs useful for larger networks, c.f. ResNeXt

Group normalization (GN)

Group Normalization, We, He, 2018
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o RestNet-50

o Batch size = 32

o But with some fixes,
LayerNorm performs
on par/better.

A comparison of different normalizations

Link

https://theaisummer.com/normalization/
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o Instead of normalizing activations, normalize weights

o The idea is to decouple the length from the direction of the weight vector and 
hence reparameterize the network to speed up the training.

o Re-parameterize weights

𝒘 = 𝑔
𝒗
𝒗

o Similar to dividing by standard deviation in batch normalization

o Can be combined with mean-only batch normalization
◦ Subtract the mean (but not divide by the standard deviation)
◦ Then, apply weight normalization

Weight normalization

Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks, Salimans, Kingma, 2016



UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES                                                                                    DEEPER INTO DEEP 
LEARNING AND OPTIMIZATIONS - 69

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 69 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 69 VISLabDEEP LEARNING ONE - 69 VISLab

o Ioffe, S., & Szegedy, C. (2015).Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167.

o Salimans, T., & Kingma, D. P. (2016). Weight normalization: A simple reparameterization to accelerate training of deep neural networks. In Advances in neural 
information processing systems (pp. 901-909).

o Ba, J. L., Kiros, J. R., & Hinton, G. E. (2016). Layer normalization. arXiv preprint arXiv:1607.06450.

o Ulyanov, D., Vedaldi, A., & Lempitsky, V. (2016). Instance normalization: The missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022.

o Wu, Y., & He, K. (2018). Group normalization. In Proceedings of the European conference on computer vision (ECCV) (pp. 3-19).

o Zhang, H., Dana, K., Shi, J., Zhang, Z., Wang, X., Tyagi, A., & Agrawal, A. (2018). Context encoding for semantic segmentation. In Proceedings of the IEEE conference on 
Computer Vision and Pattern Recognition (pp. 7151-7160).

o Santurkar, S., Tsipras, D., Ilyas, A., & Madry, A. (2018). How does batch normalization help optimization?. In Advances in Neural Information Processing Systems (pp. 
2483-2493).

o Dumoulin, V., Shlens, J., & Kudlur, M. (2016). A learned representation for artistic style. arXiv preprint arXiv:1610.07629.

o Park, T., Liu, M. Y., Wang, T. C., & Zhu, J. Y. (2019). Semantic image synthesis with spatially-adaptive normalization. In Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition (pp. 2337-2346).

o Huang, X., & Belongie, S. (2017). Arbitrary style transfer in real-time with adaptive instance normalization. In Proceedings of the IEEE International Conference on 
Computer Vision (pp. 1501-1510).

o Kolesnikov, A., Beyer, L., Zhai, X., Puigcerver, J., Yung, J., Gelly, S., & Houlsby, N. (2019). Big transfer (BiT): General visual representation learning. arXiv preprint 
arXiv:1912.11370.

o Qiao, S., Wang, H., Liu, C., Shen, W., & Yuille, A. (2019). Weight standardization. arXiv preprint arXiv:1903.10520.

References



Hyperparameters



Hyperparameters
-
the stuff that cannot be 
tuned with SGD

but you can run grad student descent!
(though seems tricky ->
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o The right learning rate 𝜂5 very important for fast convergence
◦ Too strong à gradients overshoot and bounce
◦ Too weak à slow training

o Learning rate per weight is often advantageous
◦ Some weights are near convergence, others not

Learning rate
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o The step sizes theoretically should satisfy the following [Robbins–Monro]

∑5F𝜂5 = ∞ and     ∑5F𝜂5! < ∞

o Intuitively, 
◦ The first term ensures that search will explore enough
◦ The second term ensures convergence

Convergence
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o Constant
◦ Learning rate remains the same for all epochs

o Step decay
◦ Decrease every T number of epochs 

or when validation loss stopped decreasing

o Inverse decay 𝜂" =
#$
$%&"

o Exponential decay 𝜂" = 𝜂'𝑒(&"

o Cosine decay!

o Often step decay preferred
◦ simple, intuitive, reusable, works well

o + warmup of learning rate common.

Learning rate schedules
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o Try several log-spaced values 108", 108!, 108G, … on a smaller set
◦ Then, you can narrow it down from there around where you get the lowest 

validation error

o You can decrease the learning rate every T (e.g., 100) training set epochs
◦ Although this highly depends on your data

In practice

Picture credit: 
Stanford Course

http://cs231n.github.io/neural-networks-2/
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Quiz

You run your model twice, once it gets the blue curve, once the red curve. 
What do you do?
1) Check the individual values of the gradients 
2) Check batch at which loss exploded
3) Try increasing batch-size or lowering the learning rate
4) All of the above

https://stackoverflow.com/questions/58633177/why-theres-a-big-jump-up-of-the-loss-curve-during-the-training
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o Start with a relatively small rate, like 20-50%
◦ If too high, your network will underfit

o With dropout you can also try larger neural networks

Dropout rate
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o If possible, start with at least 32

o Generally, as big as your GPU memory fits

Batch size
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Designing CNNs to become even better. (Don’t try this at home)

A ConvNet for the 2020s. Liu et al. 
CVPR 2022

ResNet strikes back: An improved training 
procedure in timm. Wightman et al. 2021
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o For a new problem, generally start from moderate sizes
◦ 3-5 layers
◦ A few dozens neurons at most
◦ When things check out, start increasing complexity

o For a known problem, e.g., image classification, reuse hyperparameters
◦ The one suggested by the model of choice are usually decent

Number of layers and neurons

Generally: do not come up with new architectures. Use the existing ones and tailor to needs.
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o Establish baselines

o Check that in the first round you get loss that corresponds to random guess

o Check network with few samples
◦ Turn off regularization. You should predictably overfit and get a loss of 0
◦ Turn on regularization. The loss should be higher than before

o Always a separate validation set for hyper-parameter tuning
◦ Compare the training and validation losses - there should be a gap, not too large

o Preprocess the data (at least to have 0 mean)

o Initialize weights based on activations functions Xavier or Kaiming initialization

o Use regularization (ℓ!-regularization, dropout, ...)

o Use batch normalization

o Prefer residual connections, they make a difference

o Use an experiment manager like tensorboard or Neptune or wand

o Track further metrics that are relevant to the problem at hand

Babysitting Deep Nets
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Logging tools
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o One of the most important skills

o Further reading: 
◦ http://karpathy.github.io/2019/04/25/recipe/
◦ https://phillipi.github.io/6.s898/materials/slides/8_hackers_guide.pdf

Babysitting Deep Nets

http://karpathy.github.io/2019/04/25/recipe/
https://phillipi.github.io/6.s898/materials/slides/8_hackers_guide.pdf
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o Deep Learning Book: Chapter 8, 11

o Efficient Backprop

o How Does Batch Normalization Help Optimization?

o https://medium.com/paperspace/intro-to-optimization-in-deep-learning-
momentum-rmsprop-and-adam-8335f15fdee2

o http://ruder.io/optimizing-gradient-descent/

o https://github.com/Jaewan-Yun/optimizer-visualization

o https://blog.paperspace.com/intro-to-optimization-in-deep-learning-gradient-
descent/

Reading material

http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
https://arxiv.org/abs/1805.11604
https://medium.com/paperspace/intro-to-optimization-in-deep-learning-momentum-rmsprop-and-adam-8335f15fdee2
http://ruder.io/optimizing-gradient-descent/
https://github.com/Jaewan-Yun/optimizer-visualization
https://blog.paperspace.com/intro-to-optimization-in-deep-learning-gradient-descent/


Summary

o Advanced optimizers
o Initialization
o Normalization
o Regularization
o Hyperparameters

Reading material
o Chapter 8, 11
o And the papers mentioned in the slide


