scared yet, human?

g

We asked GPT-3, OpenAl's powerful new language generator, to
write an essay for us from scratch. The assignment? To




Organisation

o Added all relevant links to canvas at the top (piazza, webpage etc.)

o Reminder that using LISA has advantage of preparing you for your MSc
project, where you will be using this

o Practicals today: opportunity to go through some solutions to exercises of
assignment 1 — and of course questions about the 2"? assignment

o Thanks for your midway feedback, we’ve read through it and will provide a
compilation at the next lecture.

o We're more than halfway done! You can do this &
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https://emojipedia.org/flexed-biceps/

Lecture overview

o What makes graphs special?
o Revisiting graphs

o Revisiting convolutions

o Spectral graph convolutions

o Spatial graph convolutions
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Graphs! Thev're everywhere
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What are graphs?

o Data structures of sets of variables (or objects) connected with each other
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What are graphs?

o Images are (or can be posed as) graphs!

o Each node carries a vector of size 3 (R,G,B) values

*gﬂ

|

¢

o »

O—O—8—0

hd
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Graphs as geometry.

Mesh Point cloud Octree

L o

L B

RGB-D Graph Projections

VISLab
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1) Classitying graphs

o Making predictions at the level of a graph

o The equivalent of image-level tasks like object recognition

Graph Regularization, Graph
convolutions e.g., dropout convolutions

)
&
O

S

Activation

\ function
P am /
Cat — 1 ™

Cat

AT TR

Output: Drugs C, D
lead to a side effect r,

Input
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2) Classitying nodes

o E.g.: who is likely to have coronavirus?

o The equivalent for images: semantic segmentation
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3) Graph generation

o Comparable to image generation

Example molecule . Generated molecule

CIH

HCl
\NH3
H,0 = Z
NH
H,0

P. Lippe, E. Gavves, Categorical Normalizing Flows via Continuous Transformations ICLR 2021
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4) Link/Edge prediction

e.g. who is likely connected with whom, what are the relationships between two nodes
no equivalent in images

) RNA

. Disease

| related
ﬁ ? or not

RNA-Disease association network
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Three tasks visualized: here with nodes that carry features

Graph classification

o This is not everything:
wonpan g © BAges could carry features

M Class 2
M Class 3

Graph
neural
network

d > Could go beyond pairwise interactions
(triangles and other topology)

> Also community detection (~like
image segmentation)

g Classify node B,
0 from node
embedding

Graph
neural
network

Predict edge )
presence from B N/

adjacent ”
embeddings

Graph
neural
network
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Graphs can be static, varying, or even evolving with time

o Molecule graphs do not change 0o oo f /

o 3D mesh grids can deform

SN

o Graph relations between objects/people
change continuously
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Regular structures vs graphs

o Regular structures are subsets of graphs
- E.g., images are grid graphs

Convolution + pooling Message passing + coarsening

Local neighborhood: fixed window Local neighborhood: 1-hop
Constant number of neighbors
With fixed ordering

Translation equivariance

Different number of neighbors
No ordering of neighbors

0O O O O O
O O O O O

Local permutation equivariance
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Directed graphs

o VerticesV = {1, ..., n}, also called “nodes”

o Edges & ={(i,j):i,j € V} € VXV (directed)
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Undirected graphs

o VerticesV = {1, ...,n}
o Edges & ={(i,j):i,j € V} € VXV (directed)
o Edges € = {{i,j}:i,j € V} € VXV (undirected)
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Graph neighborhood

o The neighborhood of a node consists of all nodes directly connected to it
NG =y:(,)) €€}
o The degree of a node is the number of neighbors: d; = |V (i)|
- The diagonal matrix D contains all degrees per node
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Attributes

o Node features x: V - R%, X = (x4, ..., X;,)

o Edge features e;;: € » R
-Ifd' €N, e.g. d’=1, we simply have a weighted graph
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Adjacency matrix

o An nXn matrix 4, for n nodes

Lo [LifGDEE
° AU T N0 (i) ¢ €

o (A” );j: number of paths that go from i to j in z steps

i | Bl B
J

k 1 T 11
a
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Adjacency matrix for undirected graphs

o The adjacency matrix is symmetric for undirected graphs

o Graph indexing is arbitrary: X’ = XP should yield same results

S— = -
5 CH EE_
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Weighted adjacency matrix

o When the edges have weights, so does the adjacency matrix
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Graph representation for us

Adjacency Node

matrix, A data, X
D x N

2345
CIEEN
HOIEE
HCIEE
EEEE
HEEN

BEOO=

d)

1
3

OEOO=

123345
434656
Edge HEECICIEE
data, E JCJEIMCICIC]
Dy x £ DEOHEECIE
m ||| | .
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I Quiz: I

What does the value of exp(A4);; tell us about node i?

1) Not much, as all values of exp(A) converge to the
same constant number

i1) How connected node i is

ii1)) How unconnected node i is

iv) How many nodes are ~1.41 hops away from node i
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Graph Laplacian

o A matrix representation of a graph: A = D — A, with variations:

o Normalize to cancel out skewing by the degree matrix
A=D'D-A)=1-D14

o Or for better symmetry
A=D"12(D - A)D"Y2=]—-D V24p~1/2

A B Cc D E F G

(1 -1
-1 2 -1
-1 5 -1 -1 -1 -1
-1 1
-1 1
-1 1
-1 1]

G Mmoo >

Input Graph G Laplacian L of G
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Graph Laplacian: meaning

o Is an operator:
o Apply this to features per node X:
F=LX

o Has analogue meaning to applying Laplacian in images:
> Approximation to second derivative:

> Je. is high when values are changing rapidly
- More accurately: where the change of value-change is high.

B C D E F G

o E.g. LX=0if X is constant: .1

B |-1 2 -1

c -1 5 -1 -1 -1 -1
-1 1

-1 1

-1 1
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Applications of the Graph Laplacian

Example: community detection

1. Construct your Laplacian and calculate its Eigenvalues and Eigenvector:

2. Using the Eigenvectors, that correspond to the smallest non-zero
eigenvalues, as the coordinates of the nodes.

3. Run K-Means clustering on those node coordinates

As an example I made a network of three major clusters with sparse

connections between different clusters.

K

The results of KMeans Clustering

Network of Clusters of different sizes

We will use it extensively for constructing convolutions on graphs later.
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Applied Laplacian written out:

o Also called “local difference operator”, note: L is also often written as A
(Lx); = — z wij (X; — ;)
LiEN ()
o Notice already: a bit similar to a convolution: local neighbors, summing,
(however no parameters here)

Labelled graph Degree matrix Adjacency matrix Laplacian matrix
/2 0 0 0 O 0\ /0 1 0 0 1 0\ ( 2 -1 0 0 -1 0\
e 0 3 00 00 1 01 01 -1 3 —1 0 —1 0
ee‘e 00200001010 0 -1 2 -1 0 0
. 0 00 3 00 0 01 0 1 1 0 0 -1 3 -1 -1
e Q 0 000 30 1 1 0 10 -1 -1 0 -1 3 0
\000001)\00100)\000—101)
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Revisiting
convolutions
with a
perspective

of Equivariance
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X[0]
X[1]
X[2]
X[3]
X[4]
X[5]
X[6]
X[71]

x[0]
x[1]
x[2]
x[3]
x[4]
x[5]
x[6]
x[7]



The shift operator, a special circulant matrix

o The output is simply shifted inputs
o The shift operator is circulant/Toeplitz

o Forw =10, 1, ..., 0]: the right-shift operator
o Similar to convolution with lots of zeros.
- Result: “shift one’ to the right

- Transpose for left-shift

-0 (-
- (R

S

o The shift operator is an orthogonal matrix (it’s a type of permutation)
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Now we want to know:

o Which operations C are equivariant to the shift operator*?

o Remember:

t with regards to g:
o Invariance: f(g(x)) = f(x) '3 C
o Equivariance: f ( g (x)) = g(f(x)) 3

o Ie C(5(x)) should be S(C(x))

C
o In our case: CSx should be SCx (ie mat muls) S 3

o How can we arrive at a form for C?

lllustration of shift equivariance as the interchangeability of shift and blur operations.

* The words operator/function/matrix are equivalent here
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As it turns out: circulant matrices commute

o In general (A,B are matrices):
A-B#B-A

o For circulant matrices:
Cw)-Cu) =C(u) - C(w)

o Convolutions (which are circulant matrices)
commute with the shift operator = £

C(w) C(u) C(w) C(w)
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https://emojipedia.org/partying-face/

What this means: Translation equivariance = circulant matrices/convolutions

o Circulant matrices enable translation equivariance
> Change the location of the input

o The results will be the same (but shifted) 3 C 3
.[. n T . -.. S S
- L L [ 5 I 1
c(w) sT sT C(w) '
shift operator shift operator

lllustration of shift equivariance as the interchangeability of shift and blur operations.

o In fact convolutions result from equivariance, linearity and locality

o Remember however: CNNs not (quite) equivariant.
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Where we are

o Want: translation equivariance
o Introduce shift operator

o Use the fact that circulant matrices commute
o To arrive at the result that convolutions fulfill these requirements

o Next:
> Go one step deeper by using circulant matrices’ eigenvectors
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Maths: All circulant matrices have the same eigenvectors!

https://github.com/mitmath/1806/blob/master/lectures/Circulant-Matrices.ipynb

o The eigenvalues of the circulant matrices are different

o But the eigenvectors always the same!
- The eigenvectors of the “translation transformation/operator”

o Let’s verity this...

Reminder:

A Q A Q"
}-{H 8 '}
NN Al |

0
A
0

S o >

Eigen vectors Eigen values Eigen vectors
of of of
A A A
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All circulant matrices have the same eigenvectors!

https://github.com/mitmath/1806/blob/master/lectures/Circulant-Matrices.ipynb

o The eigenvalues of the circulant matrices are different

o/ But the eigenvectors always the same!
- The eigenvectors of the ”translati’on transformation/operator”

In [26]: A = circulant([-1, 2, 1, @, @]) In [48]: v = np.random.rand(3)

print('Circulant matrix') Z = np.zeros(2)

print(A) A = circulant(np.append(v, z))
print('Circulant matrix')

eigvals, eigvecs = np.linalg.eig(A) print(A)

print('\nEigenvalues")

eigvals, eigvecs = np.linalg.eig(A)
print('\nEigenvalues')
print(eigvals)

print(eigvals)

print('\nEigenvectors")

print(eigvecs) print('\nEigenvectors")
print(eigvecs)
Circulant matrix Circulant matrix
[E-i g g ; i} [[e.87 8. ©. 0.61 0.13] h d . h h >
- [0'13 6'87 e. e' 9'61] _
[1 2-1 @& @] [e.61 ©.13 .87 6. @. ] at can € do 1th this:
[e 1 2-1 o] [e. ©.61 @.12 0.87 8. ]
[e e 1 2 -1]] [e. ©. ©.61 8.13 8.87]]
Eigenvalues Eigenvalues
[ 2. +0.j -1.19+42.49j -1.19-2.49j -2.31+08.22j -2.31-8.22j] [1.61+0. ©.42+40.48j ©.42-0.48j ©.95+8.5j ©.95-0.5j ]
Eigenvectors Eigenvectors
[[ ©.45+0.  ©.14-0.43j 0.14+0.43] -0.36+0.26j -0.36-0.26j] [[ @.45¢0.7  ©.14-0.43] ©.14+6.43j -0.36-0.26] -0.36+0.26]]
[ ©.45:0. -0.36-0.26j -0.36+08.26] ©.45+8.5  0.45-8.j ] [ @.45+0. -©.36-0.26] -0.36+0.26] ©.45+0.j  0.45-0.j ]
[ 0.45+0. -0.36+0.26j -0.36-8.26] -0.36-0.26j -0.36+08.267] [ ©.45+0.  -©.36+40.26] -0.36-0.26] -6.36+0.26] -0.36-0.26]]
[ .45+0.7  ©.14+0.43j ©.14-0.43j ©.14+0.43] ©.14-0.43j] [ 0.45+0.5  ©0.14+40.43j 0.14-6.43] 0.14-0.43j ©.14+0.43j]
[ 0.45¢0.5  ©.45+0.j  ©.45-0.j  ©.14-0.43j ©.1440.43j]] [e.4538.]  0.45i6.] 0.45-6.]  0.14:8.435 0.14-9.437]]
— ] — -
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Circulant eigenvectors < Shift eigenvectors

o All circulant matrices have the same eigenvectors (up to ordering)
The shift operator is a circulant matrix

o So: The circulant eigenvectors are the eigenvectors of shift
o Any convolution with any filter w involves the same eigenvectors!

o We can use this for computing convolutions differently & getting a novel
perspective on them.
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But first: What are the eigenvectors of the shift operator

o The k-th eigenvector of nxn circulant

e(k) = 2k

o Collecting all eigenvectors*

d = [¢©)

o (D

NO)

, where w, = exp(

2T 1

n

e(m=1)]

So the shift operator can be written as:

|
|

ST
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X[0]
X[1]
X[2]
X[3]
X[4]
X[5]
X[6]

n

X[7]

VISLab

x[O]-
x[1]
x[2]
x[3]
x[4]
x[5]
x[6]
x[7]_

*This is the Discrete Fourier Transform




Computing a convolution in the frequency domain

o Thus write a convolution as:
xxw=Cw)- x

E1genvectordecomp051t10n—=> ( P - A(W) ) (l)*)

- X

=& (AW) - (®* - x))

\

Discrete Fourier Transform (with DFT matrix)

I

Row-wise multiply with eigenvalues of weight matrix

J

Y

Inverse Discrete Fourier Transform (with Inverse DFT matrix)
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Convolution Theorem

o The Fourier of a convolution is equal to product of individual Fouriers

Fif xg}=F{f} O F{g} = f+g=F HF{f} O Flg}}

o Convolution in “space” domain is equivalent to
matrix multiplication in “frequency/spectral” domain

- Frequency defined by Fourier bases exp(— l%n - kn)

o Discrete case F{f} becomes a matrix multiplication with shift DFT matrix
wxx=® 1(Aw): (@ x))
F{f) Fig)

\ J
|

g:'—l
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Convolution theorem

y X*y
'cb* FFT IFFT @
y— " XY

X

Element-wise product
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Frequency representation:

* Treat image as graph: either 3,5 or 8 neighbors.

* Now transform to frequency domain

* By only keeping some components in the frequency
domain and moving back to image space, we get a

e o e feel of what it’s covering (frequencies)

>
|

Keep First 5 Spectral Components

Keep First 100 Spectral Components

Original Image Transformed Image z’
Number of Spectral Components (m)

Y 100

>

Keep First 1500 Spectral Componentsr

Original Image = Transformed Image z’
Number of Spectral Components (m)

® 1500
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I Quiz: Remember the Fourier transform for images: \

ky

What happens if multiply this spectrum with a filter like this -> ‘
and transform it back to the spatial domain?

1) The image will be more bright
2) The image will be less sharp
3) The outer parts of the image will be darker
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Convolution theorem: x *xw = ® - (A(w) (D™ - x))

Circulant matrix

C(w)

X — > W * X
d||P* DFT IDFT® || P”
X - » W * X

Wy

! W |
Element-wise product

https://towardsdatascience.com/deriving-convolution-from-first-principles-4{f124888028
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Implications

o If we can compute (inverse) Fouriers and their inverse fast, then we save time
(whether conv or DFT is used is determined in CUDA automatically)

o Fast Fourier Transform (FFT): A faster version of DFT to get @
> 0(nlogn) vs 0(n?)
- Replace sliding window convolutions with very fast matrix multiplications

o Convolution as result of equivariance

Circulant matrix
C(w)
W * X

X
d>”¢‘ DFT IDFT ¢||¢*

X W* X

Wy
Wn

Element-wise product

https://towardsdatascienci.co... weas vy coriv vamnons aaoad-first-principles-4££124888028
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It translation equivariance leads to CNNs, what else is there?

o What we take from this:
o convolutions can be computed in spectral domain in a simple fashion

o thanks to a useful eigenspace that diagonalizes all convolutions

o Can we generalize to other equivariances beyond translation?
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A large field: Group Equivariant Deep Learning

Group convolutional neural networks! (G-CNNs) can improve over
classical CNNs by:

- Allowing weight sharing beyond just translations

- Increasing data efficiency

Symmetries in computer vision3*
(translation, scale, rotation, perspective)

Low-level features
(e.g. local surfaces)

features can appear at arbitrary
locations, angles, and scales

&
‘s

Low-level features arranged at
relative angles and displacements
form mid-level features

Mid-level features
(e.g. vessel segments) By,

Symmetries in audio®
(translation, scale/pitch)

s Ly [Y](a,5)
& L.2(v](1,3)

(@3 1L ulbl(@5) / [f %6 ¥l(u 8)

ik ‘ = ,

Symmetries in medical image analysis?3
(translation, rotation, scale)

Molecular and Physical systems®
(translation, rotation, reflection)

Mid-level features arranged at
relative angles and displacements
form high-level features such as
bifurcations

[1] Cohen and Welling "Group equivariant convolutional networks” ICML 2016. [2] Bekkers and Lafarge et al. "Roto-translation covariant convolutional networks for medical image analysis." MICCAI 2018. [3] Bekkers “B-spline CNNs on Lie groups” ICLR 2020 [4] Sosnovik, Szmaja, and Smeulders "Scale-equivariant steerable networks." ICLR 2020 |5] Romero, Bekkers, lomczak,

Hoogeboom "Wavelet Networks: Scale Equivariant Learning From Raw waveforms.” arXiv:2006.05259 (2020). [6] Finzi, Marc, et al. "Generalizing convolutional neural networks for equivariance to lie groups on arbitrary continuous data." ICML 2020.
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Circulant matrices

o Thanks Wikipedia!

Definition [edit]

An nn X n circulant matrix C takes the form

Co Cn—1 C2 C1
C1 Co Cn—1 C2
C = C1 &)
Cn—2 Cn-1
| Ch—1 Cp—2 C1 Co _
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“I was lucky...”

How research gets done part 6

Previous parts:

[fundamental understanding/read papers, how-to-read-papers, implement & tinker with code, realise and seek funny moments,
MVP/principles/benchmarks/baselines]

Today:
* When to give up and try something else?
* Impossible to answer: different for everyone.
 Possible factors to consider:
* impact vs. work-required tradeoff
* Amount of fun-while-working-on-it
« Existence of small progresses
* Opportunity costs (what could you be doing instead)
* These can be big in a field like deep learning
* The more familiar you become in a topic, the more ideas you will get
* Having ideas is almost never the bottleneck after some point
« Evaluating the quality of ideas... requires intuition, which is developed with time
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Spectral graph
convolutions
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input

convolution +
nonlinear activation

pooling

fully
connected

}
|000000000000000|
|

output

class 1 (0.07)

class 2 (0.88)

class 3 (0.02)




From convolutions to spectral graph convolutions

o What is the equivalent of Fourier basis for graphs?

ANNA KARENINA

o Images are always “connected” alike; every graph is unconnected Leo Tolstoy
in its own way”

o Idea: use the graph Laplacian or Adjacency as basis

After the quote:

“Happy families are all alike; every
unhappy family is unhappy in its
own way.” of Tolstoy
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Approach: Use Eigenvectors of Graph Laplacian to replace Fourier

o EHigenvectors of Graph Laplacian as analogy to Fourier Transform.
- Why?

° Equlvalent on gI‘ldS: red = right neighbor, blue = left

neighbor, green =0

1,2,3, ...

1

Grid: 2
3

p—
N
W

Adjacency
4... >

= Laplacian - D

o On a grid this Laplacian also commutes with the shift operator, so equivalent
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Actually:

1D grid = ring graph

adjacency matrix A of ring graph = Shift operator ST
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Further details

o Eigenvectors of Graph Laplacian as analogy to Fourier

- Equivalent on grids

o For undirected graphs = symmetric adjacency matrix and graph Laplacian

o For directed graphs = generalized eigenvectors/Jordan decomposition

o More elaborate

Circulant matrix
C(w
(w) Wex

. . @l " DFT IDFT ¢l (0
Replace ® with eigenvectors " L
of graph Laplacian [Wi ‘

Otherwise, same thing

Element-wise product
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Eigendecomposition of Laplacian:
L=VAVT

Applying this basis V' is called
graph Fourier Transform:

x'=VTx
This brings the signal x to the spectral
domain
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In analogy to convolutions in frequency domain:
We now define spectral graph convolutions

o Similar to regular convolutions

o Compute (Graph) Fourier Transform
xX=®"x

Where @~ are the eigenvectors (conjugate transpose) of graph Laplacian

o Apply learnable filter in Fourier space

Circulant matrix

wy - 0 . cw
X @ w = % d>"¢‘ DFT IDFT¢| @
0 v Wn be [W1 | ] WX
o Compute Inverse (Graph) Fourier Transform Element-wise product

X*y=® - (xOwW)
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Where we are, part 2

o Want: translation equivariance
o Introduce shift operator
> Use the fact that circulant matrices commute
o To arrive at the result that convolutions fullfill these requirements

o Actually convolutions can be computed in spectral domain

- Here, they are materialized as just various diagonal matrices, that re-mix
different frequencies given from the eigenspace basis

o We can move into the spectral easily on graphs by using the Laplacian
> One we do this, defining a spectral convolution on graphs is trivial
> More precisely: it’s the same as for images, except for ditferent bases/transforms
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Why the graph Laplacian™?

Apply L to X: For node v:

It’s Local:
(L2)y = Lz « Aggregating over immediate neighbour features x_u.
- E;LW"”“ « Combining with the node’s own feature x_v.
uc
— Z(Dvu - Avu)mu
ue G
=D, z, — Z Ly,
ueN (v)
It’s permutation equivariant:
T Pz Say, with f(x,L) = Lx:
L— PLP"
Ii s pLipT f(Px,PLPT) = PLPTPx = PLx = Pf(x,L)
* (it could also be adjacency or other variants of Laplacian) https://distill.pub/2021/understanding-gnns/
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Spectral graph convolution

b2
X*xy =@ dTx
Yn
In order to compute convolution X * y
« Graph FT: R =dTx 0(n?)+0(n?)
91
 Apply filter: Roy = g 0(n)
Vn.
* Inverse graph FT: xxy=V(Xo¥) 0(n?)
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Some drawbacks of this variant

o Computational complexity of at least 0(n?)
o Parameter complexity of O(n)
o Isotropic filters (same filter no matter if small neighborhood or large one)

o Filters that depend on choice of basis and do not generalize across graphs
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Easy to increase the field of view with powers of the Laplacian

“Convolutions” as linear combinations of powers of the Laplacian:
d
pw(L) = wol, + w1 L + wo L2 + ...+ wyl® = Z w; L.
i=0
Here, w is the a vector of learned weights.
No need to have d=n, can simply stop at say d=3

No need to compute graph FT.

https://distill.pub/2021/understanding-gnns/
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Putting it together: stacking graph convolutions

Start with the original features. Color Codes:
B Computed node embeddings.

W) =g

B Learnable parameters.

Then iterate, for k = 1,2,... upto K:

k ix p(k) i
p( ) = D, (L) CorTlpute the mrfntrlxp | as the:)olynomlal
defined by the filter weights w'*) evaluated at L.
g(k) — (k) X h(k’—l) Multiply p(k) with A*~1): a standard matrix-
vector multiply operation.
k k
h( ) — 0 (g( )) Apply a non-linearity o to g(k) to get h(k),
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I Quiz: What properties does this polynomial variant have? \

d
pw(L) = wol, + wi L + wyL? + ... + ded — Z w; L'
i=0

1) We can simply precompute the powers of L
2) We do not need to actually go into the spectral space

3) We do not need to learn a parameter for every frequency, but
instead only for however many terms of Laplacian powers

4) It d is not n, it does not incorporate global information at
early stages

5) All of the above
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Some drawbacks of this variant now

o Computational complexity of at least 0(n?)
> Avoided for polynomial variant

o Parameter complexity of O(n) for original spectral
o Complexity of O(1) for polynomial variant

o Isotropic filters (same filter no matter if small neighborhood or large one)

o Filters that depend on choice of basis and do not generalize across graphs
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Spatial graph
convolutions
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Input

Graph
convolutions

o\
-

Regularization, Graph

e.g., dropout

Activation
function

/

convolutions

Output: Drugs C, D
lead to a side effect r,




Spatial vs Spectral - A brief history

“Spatial methods” MoNet
, , Monti et al.
(CVPR 2017)
Original GNN GG-NN |
= Gorietal. = Li et al.
Neural MP
(2005) (ICLR 2016) Gilmer et al.
(ICML 2017)
GCN
Kipf & Welling
(ICLR 2017) T
Spectral ChebNet
GBraph (‘:NIN — Defferrard et al. “Spectral methods”
runa et al.
(ICLR2015) (NIPS 2016)

T

Essentially what we just did

Relation Nets
Qantarn at al ?raphSAGE

'amilton et al.
Programs as Graphs [NIPS 2017
- Allamanis ef |
nc1 D anA4 NRl

<ipf et al.

GAT  §

Veliskovié et al. ML 2018)
(ICLR 2018)

“DL on graph explosion”

Other early work:

- Duvenaud et al. (NIPS 2015)

- Dai et al. (ICML 2016)

- Niepert et al. (ICML 2016)

- Battaglia et al. (NIPS 2016)

- Atwood & Towsley (NIPS 2016)
- Sukhbaatar et al. (NIPS 2016)

Image borrowed from Kipf

—



Graph convolutions

o Convolutions as (“local”) matrix multiplications

Adjacency matrix

Neighbors of “6”
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What can we use from the spectral approach?

Why the graph Laplacian?

For node v It's Local: . . . Combine
Ui, = g + Aggregating over immediate neighbour features X u. <= &
Y oo : . aggregate
=5 Loa, * Combining with the node’s own feature x v. __
ueG —
- ;G(D s * Remember: "k can look to neighbors with up to k as a generic principle
~ D5 - Y =, hops, otherwise values are 0
EN()

It's permutation invariant:

z— Pz

SRR
Ii _ PLipPT f(Px,PLPT) = PLP"Px = PLx = Pf(x,L)

Say, with f(x,L) = Lx:

https://distill pub/2021/understanding-gnns/
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Graph Convolutional Networks (GCN)

o Main idea: keep this as simple as possible, get larger neighborhood by stacking.
Choose polynomial with just order of 1

o Each node has a feature vector (row-wise)
o Left-multiplying normalized Laplacian, we combine features in neighborhood

- Right-multiplying with a weight matrix, we “cor
y ReLU (Lnorm W)

/ T. Kipf, M. Welling, 2016
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Graph Convolutional Networks (GCN)

o

o We can also stack multiple convolution layers: k of those will give k neighborhood
y = softmax(L ReLU(LXW )W)

)

/ T. Kipf, M. Welling, 2016

lgl UNIVERSITY OF AMSTERDAM DEEP LEARNING ONE - 70 VISLab



Putting it together:

Hidden layer

RelLU

Has weights W,

& UNIVERSITY OF AMSTERDAM

Hidden layer
-
o
o
® o
°
°
°
*—g¢
. '\
o

Has weights W,
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Other kind of aggregation: Graph Attention Networks (GAT)

o Similar but including attention as aggregation: y; = h(Z jen () Qi jx]-)

o Using self-attention:
~ exp(ej)
Lren() explei)’

Clij

o where ¢;; are the self-attention weights (like query == key)
e;j = LeakyRELU([x;W,x;W| - u)

o uis a weight vector

F. Monti et al., 2017; P. Velickovic et al. 2018
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Self-attention for graph convolutions

Written out, GAT looks similar to our the approach with Laplacian
but only uses 1-hop neighbors at every step:

> ot

0 _
hg) ) - Ty forallv € V.
Node v's ...isjust node v's
initial original features.
embedding.
andfork =1,2,...upto K:

(k) _ £k (k)
h! = O |w

ueN (v)

Node v's

embedding at
step k.

Weighted mean of
v's neighbour's
embeddings at
stepk — 1.

=0 —+ al()’f, 1)h,£)k 0 forallv € V.

Node v's
embedding at
stepk — 1.
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Visualisation of computation of attention
weight and attention-based computation:

concat/avg

Figure 1: Left: The attention mechanism a(WI_z'i,Wl_{j) employed by our model, parametrized

by a weight vector & € R2F’, applying a LeakyReLU activation. Right: An illustration of multi-
head attention (with K = 3 heads) by node 1 on its neighborhood. Different arrow styles and
colors denote independent attention computations. The aggregated features from each head are

concatenated or averaged to obtain h}.

P. Velickovic et al. 2018

VISLab
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Connection to transformers

o When operating on a complete graph, ie with A=1 (a

Architecture Domain (2 Symmetry group &
matriX Wlth Only OneS) CNN Grid Translation
Spherical CNN Sphere / SO(3)  Rotation SO(3)
o With the attentional GCN we recover the Transformer Intrinsic / Mesh CNN' Manifold Isometry Iso(%2) /
Gauge symmetry SO(2)
o Can think of computed attention weights as a “soft” gﬁsm ¥ RSt
adjacency matriX Transformer Complete Graph Permutation X,
LSTM 1D Grid Time warping

e.g. attention weights of the [CLS] token to the spatial patches at the last linear layer of a ViT
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Message Passing Neural Network (MPNN)

o General aggregation function
oy = 9 jenq) h(xi xj, €5, W))

Message Passing for Node V1
fort=1

h3
miv” - Z h‘fv

wEN(v) @ 100 | 5

Wt = average(h,, mi'1)

h2

ht - hidden state for each node
20 5 | 5

V1
h1

Gilmer et al. 2017
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PyTorch Geometric baseclass

o convolution € attention € message-passing.

CREATING MESSAGE PASSING NETWORKS

Generalizing the convolution operator to irregular domains is typically expressed as a neighborhood
aggregation or message passing scheme. With xz(k_
layer (k — 1) and ej; € RP denoting (optional) edge features from node 7 to node 2, message

passing graph neural networks can be described as

k k— k— k—
x7(l ) = ’Y(k) (xg 1)7DjeN'(z') ¢(k) (xﬁ 1),x§. 1),ej,z')),

where [ denotes a differentiable, permutation invariant function, e.g., sum, mean or max, and 7y
and ¢ denote differentiable functions such as MLPs (Multi Layer Perceptrons).

D € RF denoting node features of node % in

https://pytorch-geometric.readthedocs.io/en/latest/notes/create_gnn.html
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Overview

N
® "

C

Three “flavours” of GNNs, left-to-right: convolutional, attentional,

and general nonlinear message passing flavours. All are forms of

message passing. Figure adapted from P. Veli¢kovic.
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Finally, a note about coarsening graphs

o Group nodes together, saves compute

o Learnable pooling

o Adjacency matrices get updated

o Add, average or max pool the node features

11

@)e’
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Where we are, part 3

o Want: translation equivariance
o Introduce shift operator
o Use the fact that circulant matrices commute
o To arrive at the result that convolutions fullfill these requirements

(e]

(e]

o Instead of spectral convs that use the full-spectrum, we can also just use the polynomial variant with several
advantages

o We can also simply do local (spatial) operations at every step, by staying in the neighborhood
o This yields spatial graph CNNs which come in various flavors (GCN, GAT, MPN)

> The GAT on a complete graph recovers the transformer architecture, attention can be seen as soft edges
> MPN encompasses previous approaches to be more generic
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The last few lectures
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o What makes graphs special?

o Revisiting graphs

Summary o Revisiting convolutions

o Spectral graph convolutions and

o Spatial graph convolutions

Extra reading material:

o Graphs, Convolutions, and Neural Networks. Gama et al.

o Understanding Convolutions on Graphs. Daigavane et al.
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https://cas.tudelft.nl/pubs/leus20spm1.pdf
https://distill.pub/2021/understanding-gnns/

o We're more than halfway done!

o Have some snacks!
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