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o Added all relevant links to canvas at the top (piazza, webpage etc.)

o Reminder that using LISA has advantage of preparing you for your MSc 
project, where you will be using this

o Practicals today: opportunity to go through some solutions to exercises of 
assignment 1 – and of course questions about the 2nd assignment

o Thanks for your midway feedback, we’ve read through it and will provide a 
compilation at the next lecture.

o We’re more than halfway done! You can do this 💪

Organisation

https://emojipedia.org/flexed-biceps/


UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES                                                                                    DEEPER INTO DEEP 
LEARNING AND OPTIMIZATIONS - 3

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 3 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 3 VISLabDEEP LEARNING ONE - 3 VISLab

o What makes graphs special?

o Revisiting graphs

o Revisiting convolutions

o Spectral graph convolutions

o Spatial graph convolutions

Lecture overview
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Graphs! They’re everywhere
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o Data structures of sets of variables (or objects) connected with each other

What are graphs?
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o Images are (or can be posed as) graphs!

o Each node carries a vector of size 3 (R,G,B) values

What are graphs?
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Graphs as geometry. 
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o Making predictions at the level of a graph

o The equivalent of image-level tasks like object recognition

1) Classifying graphs
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o E.g.: who is likely to have coronavirus?

o The equivalent for images: semantic segmentation 

2) Classifying nodes
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o Comparable to image generation

3) Graph generation

Generated moleculeExample molecule

P. Lippe, E. Gavves, Categorical Normalizing Flows via Continuous Transformations ICLR 2021



UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES                                                                                    DEEPER INTO DEEP 
LEARNING AND OPTIMIZATIONS - 11

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 11 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 11 VISLabDEEP LEARNING ONE - 11 VISLab

4) Link/Edge prediction

?

e.g. who is likely connected with whom, what are the relationships between two nodes
no equivalent in images
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o This is not everything:
◦ Edges could carry features
◦ Could go beyond pairwise interactions 

(triangles and other topology)
◦ Also community detection (~like 

image segmentation)

Three tasks visualized: here with nodes that carry features
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o Molecule graphs do not change

o 3D mesh grids can deform

o Graph relations between objects/people
change continuously

Graphs can be static, varying, or even evolving with time
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o Regular structures are subsets of graphs
◦ E.g., images are grid graphs

Regular structures vs graphs

o Convolution + pooling
o Local neighborhood: fixed window
o Constant number of neighbors
o With fixed ordering
o Translation equivariance

o Message passing + coarsening
o Local neighborhood: 1-hop
o Different number of neighbors
o No ordering of neighbors
o Local permutation equivariance
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Revisiting graphs
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o Vertices 𝒱 = 1,… , 𝑛 , also called “nodes”

o Edges ℰ = 𝑖, 𝑗 : 𝑖, 𝑗 ∈ 𝒱 ⊆ 𝒱×𝒱 (directed)

Directed graphs
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o Vertices 𝒱 = 1,… , 𝑛

o Edges ℰ = 𝑖, 𝑗 : 𝑖, 𝑗 ∈ 𝒱 ⊆ 𝒱×𝒱 (directed)

o Edges ℰ = {𝑖, 𝑗}: 𝑖, 𝑗 ∈ 𝒱 ⊆ 𝒱×𝒱 (undirected)

Undirected graphs
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o The neighborhood of a node consists of all nodes directly connected to it
𝒩 𝑖 = 𝑗: 𝑖, 𝑗 ∈ ℰ

o The degree of a node is the number of neighbors: 𝑑! = |𝒩 𝑖 |
◦ The diagonal matrix 𝐷 contains all degrees per node

Graph neighborhood
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o Node features 𝒙: 𝒱 → ℝ", 𝑋 = (𝒙#, … , 𝒙$)

o Edge features 𝒆!%: ℰ → ℝ"!

◦ If 𝑑& ∈ ℕ , e.g. d’=1, we simply have a weighted graph

Attributes

𝑥!

𝑥"𝑒!"
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o An 𝑛×𝑛 matrix 𝐴, for 𝑛 nodes

o 𝐴!% = =1 if i, j ∈ ℰ
0 if i, j ∉ ℰ

o (𝐴) )!%: number of paths that go from i to j in z steps 

Adjacency matrix

𝑖

𝑗

𝑘

𝑙

𝑖 𝑗 𝑘 𝑙

𝑖

𝑗

𝑘
𝑙

𝑚
𝑚

𝑚

1

1

1 1 0

0
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o The adjacency matrix is symmetric for undirected graphs

o Graph indexing is arbitrary: X’ = XP should yield same results 

Adjacency matrix for undirected graphs

𝑖

𝑗

𝑘

𝑙

𝑖 𝑗 𝑘 𝑙

𝑖

𝑗

𝑘
𝑙

𝑚
𝑚

𝑚

0

0
1

1

1 1

1

1



UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES                                                                                    DEEPER INTO DEEP 
LEARNING AND OPTIMIZATIONS - 22

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 22 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 22 VISLabDEEP LEARNING ONE - 22 VISLab

o When the edges have weights, so does the adjacency matrix

Weighted adjacency matrix

𝑖

𝑗

𝑘

𝑙

𝑖 𝑗 𝑘 𝑙

𝑖

𝑗

𝑘
𝑙

𝑚
𝑚

𝑚

𝑤!"

𝑤"!

𝑤#!

𝑤!$ 𝑤!$

𝑤#!
𝑤!", 𝑤"!

0

0
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Graph representation for us
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Quiz: 
What does the value of exp 𝐴 !! tell us about node i?

i) Not much, as all values of exp(A) converge to the 
same constant number

ii) How connected node i is 

iii) How unconnected node i is

iv) How many nodes are ~1.41 hops away from node i
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o A matrix representation of a graph: Δ = 𝐷 − 𝐴, with variations:

o Normalize to cancel out skewing by the degree matrix
Δ = 𝐷/# 𝐷 − 𝐴 = 𝐼 − 𝐷/#𝐴

o Or for better symmetry
Δ = 𝐷/#/1 𝐷 − 𝐴 𝐷/#/1 = 𝐼 − 𝐷/#/1𝐴𝐷/#/1

Graph Laplacian

𝑥!

𝑥"𝑤!"
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o Is an operator:

o Apply this to features per node X:

F =  LX 

o Has analogue meaning to applying Laplacian in images:
◦ Approximation to second derivative:
◦ Ie. is high when values are changing rapidly
◦ More accurately: where the change of value-change is high.

o E.g. LX = 0 if X is constant:

Graph Laplacian: meaning
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Applications of the Graph Laplacian
Example: community detection

We will use it extensively for constructing convolutions on graphs later.
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o Also called “local difference operator”, note: L is also often written as Δ

L𝒙 𝒊 =
1
𝑑!

G
%∈𝒩 !

𝑤!% (𝒙! − 𝒙%)

o Notice already: a bit similar to a convolution: local neighbors, summing, 
(however no parameters here)

Applied Laplacian written out:

𝑥!

𝑥"𝑤!"
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Revisiting 
convolutions
with a 
perspective 
of Equivariance
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o The output is simply shifted inputs

o The shift operator is circulant/Toeplitz

o For 𝑤 = 0, 1,… , 0 : the right-shift operator
◦ Similar to convolution with lots of zeros. 
◦ Result: ‘shift one’ to the right
◦ Transpose for left-shift

o The shift operator is an orthogonal matrix (it’s a type of permutation)

The shift operator, a special circulant matrix
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o Which operations C are equivariant to the shift operator*?
o Remember:

o Ie C(S(x)) should be S(C(x))
o In our case: CSx should be SCx (ie mat muls)
o How can we arrive at a form for C?

Now we want to know:

f with regards to g:

o Invariance: 𝑓 𝑔 𝑥 = 𝑓(𝑥)

o Equivariance: 𝑓 𝑔 𝑥 = 𝑔(𝑓 𝑥 )

* The words operator/function/matrix are equivalent here
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o In general (A,B are matrices):
𝐴 ⋅ 𝐵 ≠ 𝐵 ⋅ 𝐴

o For circulant matrices:
𝐶 𝑤 ⋅ 𝐶 𝑢 = 𝐶 𝑢 ⋅ 𝐶(𝑤)

o Convolutions (which are circulant matrices)
commute with the shift operator ⇒🥳! 

As it turns out: circulant matrices commute

https://emojipedia.org/partying-face/
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o Circulant matrices enable translation equivariance
◦ Change the location of the input
◦ The results will be the same (but shifted)

o In fact convolutions result from equivariance, linearity and locality
o Remember however: CNNs not (quite) equivariant.

What this means: Translation equivariance ⇒ circulant matrices/convolutions
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o Want: translation equivariance
◦ Introduce shift operator
◦ Use the fact that circulant matrices commute
◦ To arrive at the result that convolutions fulfill these requirements

o Next: 
◦ Go one step deeper by using circulant matrices’ eigenvectors 

Where we are
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o The eigenvalues of the circulant matrices are different

o But the eigenvectors always the same!
◦ The eigenvectors of the “translation transformation/operator”

o Let’s verify this…

Maths: All circulant matrices have the same eigenvectors!
https://github.com/mitmath/1806/blob/master/lectures/Circulant-Matrices.ipynb

Reminder:
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o The eigenvalues of the circulant matrices are different

o But the eigenvectors always the same!
◦ The eigenvectors of the “translation transformation/operator”

All circulant matrices have the same eigenvectors!
https://github.com/mitmath/1806/blob/master/lectures/Circulant-Matrices.ipynb

What can we do with this?
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o All circulant matrices have the same eigenvectors (up to ordering)
The shift operator is a circulant matrix

o So: The circulant eigenvectors are the eigenvectors of shift

o Any convolution with any filter 𝒘 involves the same eigenvectors!

o We can use this for computing convolutions differently & getting a novel 
perspective on them.

Circulant eigenvectors ⇔ Shift eigenvectors 
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o The 𝑘-th eigenvector of 𝑛×𝑛 circulant

𝑒(") =

𝜔$%⋅"

𝜔$'⋅"

𝜔$(⋅"
⋮

𝜔$
($)')⋅"

, where 𝜔* = exp(
2π ⋅ 𝑖
𝑛

)

o Collecting all eigenvectors*
Φ = 𝑒(%) 𝑒(') 𝑒(() ⋯ 𝑒($)')

So the shift operator can be written as:

But first: What are the eigenvectors of the shift operator

*This is the Discrete Fourier Transform
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o Thus write a convolution as:
𝒙 ∗ 𝒘 = 𝐶(𝒘) ⋅ 𝒙
= 𝚽 ⋅ 𝚲 𝐰 ⋅ 𝚽∗ ⋅ 𝒙
= 𝚽 ⋅ 𝚲 𝐰 ⋅ 𝚽∗ ⋅ 𝒙

Computing a convolution in the frequency domain

Discrete Fourier Transform (with DFT matrix)

Inverse Discrete Fourier Transform (with Inverse DFT matrix)

Row-wise multiply with eigenvalues of weight matrix

Eigenvectordecomposition
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o The Fourier of a convolution is equal to product of individual Fouriers

ℱ 𝑓 ∗ 𝑔 = ℱ 𝑓 ⊙ℱ 𝑔 ⇒ 𝑓 ∗ 𝑔 = ℱ/# ℱ 𝑓 ⊙ℱ 𝑔

o Convolution in “space” domain is equivalent to
matrix multiplication in  “frequency/spectral” domain
◦ Frequency defined by Fourier bases exp(− !1<

=
⋅ 𝑘𝑛 )

o Discrete case ℱ 𝑓 becomes a matrix multiplication with shift DFT matrix
𝒘 ∗ 𝒙 = 𝚽/𝟏 𝚲 𝐰 ⋅ 𝚽 ⋅ 𝒙

Convolution Theorem

ℱ 𝑔

ℱ#$

ℱ 𝑓
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Convolution theorem
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Frequency representation:
• Treat image as graph: either 3,5 or 8 neighbors. 
• Now transform to frequency domain
• By only keeping some components in the frequency 

domain and moving back to image space, we get a 
feel of what it’s covering (frequencies)
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Spectral representation:Quiz: Remember the Fourier transform for images:

What happens if multiply this spectrum with a filter like this ->
and transform it back to the spatial domain?

1) The image will be more bright
2) The image will be less sharp
3) The outer parts of the image will be darker



UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES                                                                                    DEEPER INTO DEEP 
LEARNING AND OPTIMIZATIONS - 45

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 45 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 45 VISLabDEEP LEARNING ONE - 45 VISLab

Convolution theorem: 𝒙 ∗ 𝒘 = 𝚽 ⋅ 𝚲 𝐰 ⋅ 𝚽∗ ⋅ 𝒙

https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028
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o If we can compute (inverse) Fouriers and their inverse fast, then we save time 
(whether conv or DFT is used is determined in CUDA automatically)

o Fast Fourier Transform (FFT): A faster version of DFT to get Φ
◦ 𝑂 𝑛 log 𝑛 vs 𝑂 𝑛1
◦ Replace sliding window convolutions with very fast matrix multiplications

o Convolution as result of equivariance

Implications

https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028
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o What we take from this:
◦ convolutions can be computed in spectral domain in a simple fashion
◦ thanks to a useful eigenspace that diagonalizes all convolutions

o Can we generalize to other equivariances beyond translation?

If translation equivariance leads to CNNs, what else is there?
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A large field: Group Equivariant Deep Learning

Symmetries in medical image analysis2,3
(translation, rotation, scale)

Group convolutional neural networks1 (G-CNNs) can improve over 
classical CNNs by:
- Allowing weight sharing beyond just translations
- Increasing data efficiency 

Symmetries in computer vision3,4

(translation, scale, rotation, perspective)

Symmetries in audio5

(translation, scale/pitch)

[1] Cohen and Welling "Group equivariant convolutional networks” ICML 2016. [2] Bekkers and Lafarge et al. "Roto-translation covariant convolutional networks for medical image analysis." MICCAI 2018. [3] Bekkers “B-spline CNNs on Lie groups” ICLR 2020 [4] Sosnovik, Szmaja, and Smeulders "Scale-equivariant steerable networks." ICLR 2020 [5] Romero, Bekkers, Tomczak, 
Hoogeboom "Wavelet Networks: Scale Equivariant Learning From Raw waveforms.” arXiv:2006.05259 (2020). [6] Finzi, Marc, et al. "Generalizing convolutional neural networks for equivariance to lie groups on arbitrary continuous data." ICML 2020.

Molecular and Physical systems6
(translation, rotation, reflection)
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o Thanks Wikipedia!

Circulant matrices
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How research gets done part 6 

Previous parts: 
[fundamental understanding/read papers, how-to-read-papers, implement & tinker with code, realise and seek funny moments, 
MVP/principles/benchmarks/baselines]

Today:

• When to give up and try something else?
• Impossible to answer: different for everyone.
• Possible factors to consider: 

• impact vs. work-required tradeoff
• Amount of fun-while-working-on-it
• Existence of small progresses
• Opportunity costs (what could you be doing instead)

• These can be big in a field like deep learning
• The more familiar you become in a topic, the more ideas you will get
• Having ideas is almost never the bottleneck after some point
• Evaluating the quality of ideas… requires intuition, which is developed with time

“I was lucky…” Serge 
Haroche
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Spectral graph 
convolutions
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o What is the equivalent of Fourier basis for graphs?

o Images are always “connected” alike; every graph is unconnected 
in its own way*

o Idea: use the graph Laplacian or Adjacency as basis

From convolutions to spectral graph convolutions

After the quote:
“Happy families are all alike; every 
unhappy family is unhappy in its 
own way.” of Tolstoy
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o Eigenvectors of Graph Laplacian as analogy to Fourier Transform.
◦ Why? 
◦ Equivalent on grids:

o On a grid this Laplacian also commutes with the shift operator, so equivalent

Approach: Use Eigenvectors of Graph Laplacian to replace Fourier

red = right neighbor, blue = left 
neighbor, green = 0

1, 2, 3, ….
1
2
3
.
.

1  2  3
4 …

Adjacency

= Laplacian - D

Grid:
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Actually:
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o Eigenvectors of Graph Laplacian as analogy to Fourier
◦ Equivalent on grids

o For undirected graphs ⇒ symmetric adjacency matrix and graph Laplacian

o For directed graphs ⇒ generalized eigenvectors/Jordan decomposition
◦ More elaborate

Further details

Replace 𝚽 with eigenvectors 
of graph Laplacian
Otherwise, same thing 

Eigendecomposition	of	Laplacian:

𝐿 = 𝑉Λ𝑉#

Applying this basis 𝑉 is called 
graph Fourier Transform:

𝑥$ = 𝑉#𝑥
This brings the signal x to the spectral 
domain
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o Similar to regular convolutions

o Compute (Graph) Fourier Transform
a𝒙 = 𝚽∗ 𝐱

Where 𝚽∗ are the eigenvectors (conjugate transpose) of graph Laplacian

o Apply learnable filter in Fourier space

a𝒙⊙ a𝒘 =
a𝑤# ⋯ 0
⋮ ⋱ ⋮
0 ⋯ a𝑤$

a𝒙

o Compute Inverse (Graph) Fourier Transform
𝒙 ∗ 𝒚 = 𝚽 ⋅ (a𝒙⊙ a𝒘)

In analogy to convolutions in frequency domain:
We now define spectral graph convolutions
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o Want: translation equivariance
◦ Introduce shift operator
◦ Use the fact that circulant matrices commute
◦ To arrive at the result that convolutions fullfill these requirements

o Actually convolutions can be computed in spectral domain
◦ Here, they are materialized as just various diagonal matrices, that re-mix 

different frequencies given from the eigenspace basis

o We can move into the spectral easily on graphs by using the Laplacian
◦ One we do this, defining a spectral convolution on graphs is trivial 
◦ More precisely: it’s the same as for images, except for different bases/transforms

Where we are, part 2
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Why the graph Laplacian*?

https://distill.pub/2021/understanding-gnns/

Apply L to X: For node v: It’s Local:
• Aggregating over immediate neighbour features x_u.
• Combining with the node’s own feature x_v.

Say,	with	𝑓 𝑥, 𝐿 = 𝐿𝑥:

𝑓 𝑃𝑥, 𝑃𝐿𝑃# = 𝑃𝐿𝑃#𝑃𝑥 = 𝑃𝐿𝑥 = 𝑃𝑓(𝑥, 𝐿)

* (it could also be adjacency or other variants of Laplacian)

It’s permutation equivariant:
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Spectral graph convolution
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o Computational complexity of at least 𝑂 𝑛1 vs O(nlog(n)) for spatial convs

o Parameter complexity of 𝑂(𝑛) vs O(1)

o Isotropic filters (same filter no matter if small neighborhood or large one)

o Filters that depend on choice of basis and do not generalize across graphs

Some drawbacks of this variant
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Easy to increase the field of view with powers of the Laplacian

“Convolutions” as linear combinations of powers of the Laplacian:

Here, w is the a vector of learned weights.

No need to have d=n, can simply stop at say d=3

No need to compute graph FT.

https://distill.pub/2021/understanding-gnns/
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Putting it together: stacking graph convolutions
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Quiz: What properties does this polynomial variant have?

1) We can simply precompute the powers of L
2) We do not need to actually go into the spectral space
3) We do not need to learn a parameter for every frequency, but 
instead only for however many terms of Laplacian powers
4) If d is not n, it does not incorporate global information at 
early stages 
5) All of the above
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o Computational complexity of at least 𝑂 𝑛1 vs O(nlog(n)) for spatial convs
◦ Avoided for polynomial variant

o Parameter complexity of 𝑂(𝑛) for original spectral
◦ Complexity of O(1) for polynomial variant                        vs O(1)

o Isotropic filters (same filter no matter if small neighborhood or large one)

o Filters that depend on choice of basis and do not generalize across graphs

Some drawbacks of this variant now
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Spatial graph 
convolutions



Essentially what we just did
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o Convolutions as (“local”) matrix multiplications

Graph convolutions

1

6

2

3

5

4

8

7

10

9
11

Adjacency matrix

Neighbors of “6”
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What can we use from the spectral approach?

Combine 
& aggregate

as a generic principle
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o Main idea: keep this as simple as possible, get larger neighborhood by stacking.
Choose polynomial with just order of 1

o Each node has a feature vector (row-wise)
◦ Left-multiplying normalized Laplacian, we combine features in neighborhood
◦ Right-multiplying with a weight matrix, we “convolve”/aggregate

𝒚 = ReLU(𝑳𝒏𝒐𝒓𝒎𝑿𝑾)

Graph Convolutional Networks (GCN)

T. Kipf, M. Welling, 2016

1

6

2
3

5
4

8

7

1
0

9 1
1
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Graph Convolutional Networks (GCN)

T. Kipf, M. Welling, 2016

1

6

2
3

5
4

8

7

1
0

9 1
1

o Each node has a feature vector (row-wise)
◦ Left-multiplying normalized Laplacian, we combine features in neighborhood
◦ Right-multiplying with a weight matrix, we “convolve”/aggregate

o We can also stack multiple convolution layers: k of those will give k neighborhood
𝒚 = softmax(L ReLU 𝐿𝑿𝑾# 𝑾1)
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Putting it together:

Has weights 𝑾𝟏 Has weights 𝑾𝟐
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o Similar but including attention as aggregation: 𝑦% = ℎ ∑%∈𝒩 ! 𝑎!%𝒙𝒋

o Using self-attention: 

𝑎!% =
exp(𝑒!%)

∑`∈𝒩(!) exp(𝑒!%)
,

o where 𝑒!% are the self-attention weights (like query == key)
𝑒!% = LeakyRELU [𝒙!𝑾,𝒙%𝑾 ⋅ 𝑢 )

o 𝑢 is a weight vector

Other kind of aggregation: Graph Attention Networks (GAT)

F. Monti et al., 2017; P. Velickovic et al. 2018
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Self-attention for graph convolutions

P. Velickovic et al. 2018

Written out, GAT looks similar to our the approach with Laplacian 
but only uses 1-hop neighbors at every step: Visualisation of computation of attention 

weight and attention-based computation:
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o When operating on a complete graph, ie with A=1 (a 
matrix with only ones)

o With the attentional GCN we recover the Transformer

o Can think of computed attention weights as a “soft” 
adjacency matrix

Connection to transformers

e.g. attention weights of the [CLS] token to the spatial patches at the last linear layer of a ViT
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o General aggregation function
◦ 𝑦% = 𝑔(∑%∈𝒩 ! ℎ 𝑥!, 𝑥%, 𝑒!%,𝑊 )

Message Passing Neural Network (MPNN)

j

i

Gilmer et al. 2017
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o convolution ⊆ attention ⊆ message-passing.

PyTorch Geometric baseclass

https://pytorch-geometric.readthedocs.io/en/latest/notes/create_gnn.html
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Overview
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o Group nodes together, saves compute

o Learnable pooling

o Adjacency matrices get updated

o Add, average or max pool the node features

Finally, a note about coarsening graphs

1
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o Want: translation equivariance
◦ Introduce shift operator
◦ Use the fact that circulant matrices commute
◦ To arrive at the result that convolutions fullfill these requirements

o Actually convolutions can be computed in spectral domain
◦ Here, they are just various diagonal matrices, that re-mix different frequencies given from the eigenspace basis

o We can move into the spectral easily on graphs by using the Laplacian
◦ One we do this, defining a spectral convolution on graphs is trivial 
◦ More precisely: it’s the same as for images, except for different bases/transforms

o Instead of spectral convs that use the full-spectrum, we can also just use the polynomial variant with several 
advantages

o We can also simply do local (spatial) operations at every step, by staying in the neighborhood
◦ This yields spatial graph CNNs which come in various flavors (GCN, GAT, MPN)
◦ The GAT on a complete graph recovers the transformer architecture, attention can be seen as soft edges
◦ MPN encompasses previous approaches to be more generic

Where we are, part 3



UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES                                                                                    DEEPER INTO DEEP 
LEARNING AND OPTIMIZATIONS - 80

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 80 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 80 VISLabDEEP LEARNING ONE - 80 VISLab

The last few lectures
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Summary

o What makes graphs special?
o Revisiting graphs
o Revisiting convolutions
o Spectral graph convolutions and
o Spatial graph convolutions

Extra reading material:
o Graphs, Convolutions, and Neural Networks.  Gama et al. 

o Understanding Convolutions on Graphs. Daigavane et al.

https://cas.tudelft.nl/pubs/leus20spm1.pdf
https://distill.pub/2021/understanding-gnns/
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Break

o We’re more than halfway done!
o Have some snacks!


