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o Guest Lecture on 6th December will be remote, we will have 
Prof. Andrea Vedaldi from the University of Oxford 
talking about Recent trends in unsupervised learning for 3D
https://uva-live.zoom.us/j/6466222109

o Please be there in-person for lecture on the 13th December (teaching recording)

Organisation

https://uva-live.zoom.us/j/6466222109
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o Thanks for filling out mid-way feedback

o Third assignment is being edited to be lighter load

o Schedule: we understand. Aim to accommodate this esp. in teaching after lectures

o More “depth”: Lecture 8, 9, 10: are indeed more depth than breadth.

o Many more individual points received & taken into account. Thanks again.

Organisation
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Lecture overview

Generative Modelling
Autoencoders
Latent variable models
Variational inference
Variational autoencoders
Inference suboptimality
VAE variants
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o Often in ML we talk about discriminative vs generative modelling
◦p(y|x) vs p(x)
◦p is a probability density function: high means x is likely.
◦p is normalized: ∫ 𝑝 𝑥 𝑑𝑥 = 1

What is generative modelling?
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Why generative modelling?

Discriminative model: p is normalized for outputs, but not for inputs:
Generative model:
p is normalized for inputs
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o Modelling in other disciplines: aims to capture underlying processes
◦ Physics (Newton’s law --> planet motions)
◦ Economics (assumptions + free parameters that are fitted --> forecasts)
◦ Mathematics, biology, geology, …

o Benefits
◦ Interpretable: because models are built in a manner easy to 

understand
◦ Testable: if it fits data and is simple it’s likely to be good (c.f. Occam’s 

razor)
◦ Can help with discriminative models: e.g. more robust predictions
◦ For vision/language: “might” be similar to brain (predictive coding)

Why generative modelling? More reasons
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Bayes rule: if we have generative models: we have it all

o We can get a conditional generative model for 
free once we have a generative model

o Note:
◦ Previously we focussed on learning 𝑝 𝑦|𝑥
◦ What we will do today and Friday: 𝑝! 𝑥

o If true distribution of data is 𝑝∗(𝑥)

we wish to learn  𝜃 s.t. : 𝑝! 𝑥 ≈ 𝑝∗(𝑥)
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A  map of generative models

Friday!

Today!

can compute p(x)

can only sample from p(x)

approximate p(x)
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Variational Autoencoders
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Autoencoders

Feedforward network with a bottleneck layer of fewer dimensions than the input
◦ Output layer with the same dimensionality as the input
◦ An autoencoder is used to learn efficient codings of unlabelled data

Input

latent representation

reconstructed input
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Autoencoders

An autoencoder has an encoder and a decoder

Encoder learns mapping from the data 𝑥 to a low dimensional latent space

Decoder learns mapping back from latent space 𝑧 to a reconstructed observation 𝑥

By itself, we have no assumptions about the architecture (in practice: CNNs with 
transposed convolutions)

Encoder Decoder
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Autoencoders

Train the model to use latent features to reconstruct the original data

Minimizing the difference between the input and the output (e.g. L2 loss per pixel)
Loss function does not use any labels
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Autoencoders: why though?

WHY?
o we don’t need to wait 8hours on 
Lisa just to compute a not-very-
good identity function…
o the key is the “bottleneck”
o which is of lower dimension than 
the input
o thus it learns a compressed 
representation

A not so useful bottleneck
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Autoencoders for representation learning (ie use the encoder afterwards)

Learning lower-dimensional feature representations
◦ an unsupervised learning technique
◦ Remember --------------------->

Bottleneck hidden layer
◦ encourages learning compressed representations (n.b.: compression is very related to learning)
◦ removes redundant information from the raw input

Reconstruction loss
◦ forces the latent representation to capture as much information about the data as possible
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Autoencoders for representation learning

PCA Autoencoder

adjusting the weights and biases to lower the
energy of that image and to raise the energy of
similar, Bconfabulated[ images that the network
would prefer to the real data. Given a training
image, the binary state hj of each feature de-
tector j is set to 1 with probability s(bj þP

iviwij), where s(x) is the logistic function
1/E1 þ exp (–x)^, bj is the bias of j, vi is the
state of pixel i, and wij is the weight between i
and j. Once binary states have been chosen for
the hidden units, a Bconfabulation[ is produced
by setting each vi to 1 with probability s(bi þP

jhjwij), where bi is the bias of i. The states of

the hidden units are then updated once more so
that they represent features of the confabula-
tion. The change in a weight is given by

Dwij 0 e
!
bvihjÀdata j bvihjÀrecon

"
ð2Þ

where e is a learning rate, bvihjÀdata is the
fraction of times that the pixel i and feature
detector j are on together when the feature
detectors are being driven by data, and
bvihjÀrecon is the corresponding fraction for
confabulations. A simplified version of the

same learning rule is used for the biases. The
learning works well even though it is not
exactly following the gradient of the log
probability of the training data (6).

A single layer of binary features is not the
best way to model the structure in a set of im-
ages. After learning one layer of feature de-
tectors, we can treat their activities—when they
are being driven by the data—as data for
learning a second layer of features. The first
layer of feature detectors then become the
visible units for learning the next RBM. This
layer-by-layer learning can be repeated as many

Fig. 3. (A) The two-
dimensional codes for 500
digits of each class produced
by taking the first two prin-
cipal components of all
60,000 training images.
(B) The two-dimensional
codes found by a 784-
1000-500-250-2 autoen-
coder. For an alternative
visualization, see (8).

Fig. 4. (A) The fraction of
retrieved documents in the
same class as the query when
a query document from the
test set is used to retrieve other
test set documents, averaged
over all 402,207 possible que-
ries. (B) The codes produced
by two-dimensional LSA. (C)
The codes produced by a 2000-
500-250-125-2 autoencoder.

REPORTS

28 JULY 2006 VOL 313 SCIENCE www.sciencemag.org506

2006 Science paper by Hinton and Salakhutdinov
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“Autoencoders“ for representation learning (13years later): BigBiGAN

The linear probing/evaluation protocol mentioned in lecture 6:
freeze network, train linear layer

Generated images:

Large Scale Adversarial Representation Learning. Donahue et al. NeurIPS 2019--> Encoder is general purpose

additional
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Dimensionality of latent space

Lower latent dimension ⟶ poorer reconstruction
Too high latent dimension ⟶ keeps irrelevant/noisy information
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Quiz:
PCA is a motivating technique behind the first initial 
AutoEncoders. What is true?

1)PCA can have local optima and should be run multiple times 

2)PCA generally returns more interpretable features

3)PCA generally yields the same results as linear regression

4)PCA generally struggles with outliers
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PCA refresher 🍷

Read it in full here:
https://stats.stackexchange.com/quest
ions/2691/making-sense-of-principal-
component-analysis-eigenvectors-
eigenvalues

https://emojipedia.org/wine-glass/
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Denoising autoencoders
o Add some noise to the input: !𝒙 = 𝒙 + 𝜀

o Then train autoencoder to reconstruct 
original input 𝒙.

o “Denoising”; ~ augmentation-invariance

o Requires features that capture useful 
structure in the input distribution.

o Resulting latent representations: stabler 
against corruption of the input.

o Can be used for, e.g., old photographs
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Sparse autoencoders

oInclude more hidden units than input
(“overcomplete”)
oImpose sparsity constraints, e.g., 𝑙#, on activations
in the hidden layer

oOr use only top-k units
oAn alternative way to introducing bottleneck

ℒ 𝑥, 𝑥$ + Ω(ℎ)
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Autoencoder applications

Autoencoders mostly used for dimensionality reduction
◦ In fact, linear autoencoders with W_in.T == W_out learn the same subspace as PCA

Autoencoders are a generic machine learning principle: use what you have
No need for prior knowledge about invariances/augmentations
Some applications in denoising and (a bit of) representation learning

But: Autoencoders are not probabilistic and not generative models
◦ They can reconstruct the input
◦ They cannot generate new data points
◦ They cannot tell you how probable one image is
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What we will arrive at in this lecture

The Variational Autoencoder (VAE) will solve those issues.
Learn latent features z from data; sample x from model p(z) to yield p(x|z)
p(z) often simply assumed to be Gaussian.

Autoencoder

VAE

z is a latent variable
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Latent variable models

A latent variable model defines a distribution over observations 𝑥 by 
using a latent (unobserved) variable 𝑧
We specify
◦ The prior distribution 𝑝(𝑧) for the latent variable
◦ The likelihood 𝑝(𝑥|𝑧) that connects the latent variable to the observation

The prior and the likelihood define the joint distribution
𝑝(𝑥, 𝑧) = 𝑝(𝑥|𝑧)𝑝(𝑧)

We will be interested in computing the marginal likelihood 𝑝(𝑥)
and the posterior distribution 𝑝(𝑧|𝑥).

Latent variable models

● A latent variable model (LVM) defines a distribution 
over observations     by using a (vector) latent 
variable    and specifying:
○ The prior distribution          for the latent variable
○ The likelihood              that connects the latent 

variable to the observation

● The prior and the likelihood define the joint 
distribution

● We will be interested in computing the marginal 
likelihood          and the posterior distribution            .

Likelihood vs probability. A critical difference between probability and likelihood is in the interpretation of what 
is fixed and what can vary. In the case of a conditional probability, P(D|H), the hypothesis is fixed and the data are 
free to vary. Likelihood, however, is the opposite. The likelihood of a hypothesis, L(H), is conditioned on the data, 
as if they are fixed while the hypothesis can vary. The distinction is subtle, so it is worth repeating: For conditional 
probability, the hypothesis is treated as a given, and the data are free to vary. For likelihood, the data are treated as 
a given, and the hypothesis varies. (from Introduction to the Concept of Likelihood and Its Applications)

https://journals.sagepub.com/doi/full/10.1177/2515245917744314
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Latent variable models

Think of latent variable value as explaining the observation.
To generate an observation from the model, we sample as follows:

Next step: “Inference”
◦ The process going from observations 𝑥 to the latent variable 𝑧
◦ We want to know the factors that generate the data
◦ (note: sometimes in ML, we also use inference to mean “test-time” (like 

“inference speed”), but not here)

Latent variable models

● A latent variable model (LVM) defines a distribution 
over observations     by using a (vector) latent 
variable    and specifying:
○ The prior distribution          for the latent variable
○ The likelihood              that connects the latent 

variable to the observation

● The prior and the likelihood define the joint 
distribution

● We will be interested in computing the marginal 
likelihood          and the posterior distribution            .

𝑧 ~ 𝑝(𝑧)
𝑥 ~ 𝑝(𝑥|𝑧)
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Reminder: notes from ML1
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Inference

Inference: computing the posterior distribution for given x:

This requires solving the important sub-problem of computing 
the marginal likelihood of the observation: 

which is usually intractable (we cannot sum up all points in a D dim. Space)

𝑝 𝑧 𝑥 = %(',))
%(')

= %(',))
∫ % ',)! ,)!

𝑝 𝑥 = 3𝑝 𝑥, 𝑧 𝑑𝑧
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Inference

Inference as inverse process of generation.
Generate pairs (𝑥, 𝑧) from the model in two ways: 

Since we have

The joint distribution of these pairs is exactly the same, no matter how 
they were generated. (Bayes’ rule)

𝑝(𝑥|𝑧)𝑝(𝑧) = 𝑝(𝑥, 𝑧) = 𝑝 𝑧 𝑥 𝑝(𝑥)
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Why shall we do inference?

Explaining the observations
◦ inferring the posterior distribution for a datapoint allow us to determine which latent

configurations could have plausibly generated it
◦ This will allow us to generate new data points

Learning the generative model
◦ training latent variable models requires performing inference

Now, how do we do it?
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Inference via maximum likelihood

Maximum Likelihood: dominant estimation principle for probabilistic models 
Given a set of data points {𝑥-}, we define a model 𝑝!(𝑥) to represent the data.
Find 𝜃 that maximize the probability of data under the model: 

For latent variable models: no closed-form solution

𝜃./ = argmax
!
<

-0#

1
log 𝑝!(𝑥-)
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Reminder: Why the sum of logarithms?

Goal: 𝑝 𝑥 = 𝑓 𝑥, 𝜃 , given dataset {𝑥-}, i = 1,…,N

𝜃∗ = argmax2∏- 𝑝(𝑥-) assumption: every datapoint is independent
= argmax2Σ- log( 𝑝(𝑥-))

= argmax2Σ- log( 𝑓(𝑥-, 𝜃)), with f being our neural network
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The gradient of max likelihood

Let's compute the gradient of the log-likelihood for a single datapoint: 

We need to compute the posterior distribution to compute the gradient! 

The gradient of the marginal log-likelihood

Let's compute the gradient of the marginal log-likelihood for a single 
datapoint:

● We need to compute the posterior distribution to compute the 
gradient! 

● Inference performs credit assignment over latent configurations.

Using the identity

Maths:

The gradient of the marginal log-likelihood

Let's compute the gradient of the marginal log-likelihood for a single 
datapoint:

● We need to compute the posterior distribution to compute the 
gradient! 

● Inference performs credit assignment over latent configurations.

Using the identity
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But: Exact inference is hard 

Inference for continuous latent variables involves 
computing high-dimensional integrals:

Inference for discrete latent variables involves summing 
over exponentially many latent configurations 

◦ E.g., for a 3-dimensional binary 𝒛 iterate over [0,0,0],[0,0,1],[0,1,1],…
◦ For 20 dimensions 2!" ≈ 1𝑀 latents and generations. Per image 𝒙!

logB
𝒙∈5

𝑝 𝒙 = <
𝒙
log 𝑝(𝒙) =<

𝒙
log<

𝒛
𝑝𝜽(𝒙, 𝒛)

𝑝 𝑥 = 3𝑝 𝑥, 𝑧 𝑑𝑧

𝑝 𝑧 𝑥 =
𝑝(𝑥, 𝑧)

∫ 𝑝 𝑥, 𝑧 𝑑𝑧



UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES                                                                                    DEEPER INTO DEEP 
LEARNING AND OPTIMIZATIONS - 37

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 37 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 37 VISLabDEEP LEARNING ONE - 37 VISLab

Let’s take a breath. Where are we?

oAutoencoders: nice idea but does not give us probabilities
oIdea 1: let’s model it with latent variables: z -> x
o If we simply fix p(z) in some manner, p(x) can be computed as p(x|z)p(z)
oNice

oSo how do we do inference (going from observations to model parameters)?
oWe do this by learning p(z|x): learn which z was used for a given x
oHowever the “normalize across data” integral is intractable to compute
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Variational Inference

We will use the calculus of variations to approximate those intractable integrals.

This will turn the inference problem into an optimization problem
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Approximate inference

Markov Chain Monte Carlo: generate samples from the exact posterior 
using a Markov Chain 
◦ Very general; exact in the limit of infinite time / computation 
◦ Computationally expensive; convergence is hard to diagnose 

Variational inference: approximate the posterior with a tractable 
distribution, e.g., fully factorized or autoregressive 
◦ Fairly efficient, as inference is reduced to optimization w.r.t. the distribution 

parameters 
◦ Cannot trade computation for accuracy easily 
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Revisit: Kullback–Leibler divergence

Kullback–Leibler divergence provides a way of quantifying the difference 
between two probability distributions. 
KL divergence between 𝑞 and 𝑝 is defined as 

KL divergence is
◦ non-negative 𝐾𝐿(𝑞| 𝑝 ≥ 0;
◦ 𝐾𝐿(𝑞| 𝑝 = 0 if only if 𝑞 = 𝑝;
◦ Not symmetric, in general 𝐾𝐿(𝑞| 𝑝 ≠ 𝐾𝐿(𝑝| 𝑞

𝐾𝐿(𝑞| 𝑝 = 𝐸8(log
𝑞
𝑝
)
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Tool 1: Jensen’s inequality

A concave function 𝑓 (like a logarithm) on a sum will always be larger 
than the sum of 𝑓 on individual summands
◦ Basically, a line connecting two points of a function will be always below the function

𝑓 𝑡𝑥# + 1 − 𝑡 𝑥9 ≥ 𝑡𝑓 𝑥# + 1 − 𝑡 𝑓(𝑥9)

With probabilities and random variables this translates to
𝑓 𝔼[𝒙] ≥ 𝔼[𝑓(𝒙)]

log
𝑓(𝑥!)

Jensen Inequality

𝑓(𝑥")

https://en.wikipedia.org/wiki/Jensen's_inequality
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Tool 2: Monte Carlo methods

The methods rely on repeated random sampling to obtain 
numerical results.
We want to estimate the value of π
◦ 1. Draw a square, then inscribe a quadrant within it
◦ 2. Uniformly scatter a given number of points over the square
◦ 3. Count the number of points inside the quadrant, i.e. having a 

distance from the origin of less than 1
◦ 4. The ratio of the inside-count and the total-sample-count is an 

estimate of the ratio of the two areas, π/4. Multiply the result by 4 to 
estimate π.

Wikipedia

https://en.wikipedia.org/wiki/Monte_Carlo_method
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Tool 2: Monte Carlo methods
Consider the one dimensional integral

We can approximate the integral by

𝑥!, … , 𝑥"are samples drawn from 𝑝.
The MC estimate is an unbiased estimator.
In the limit of a large number of points 𝑁, 𝐼# tends to the exact value 𝐼 (Law of 
large numbers).

𝐼 = 𝐸'~%[𝑓(𝑥)] = 3𝑝(𝑥)𝑓 𝑥 𝑑𝑥

𝐸%[𝑓(𝑥)] ≈ 𝐼1 =
#
@
∑A0#@ 𝑓(𝑥A)



UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES                                                                                    DEEPER INTO DEEP 
LEARNING AND OPTIMIZATIONS - 44

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 44 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 44 VISLabDEEP LEARNING ONE - 44 VISLab

Variational inference

Variational inference turns the task of finding the posterior distribution 
into an optimization problem. 

Approximate exact posterior 𝑝!(𝑧|𝑥) with variational posterior 𝑞B(𝑧|𝑥). 

𝜙: variational parameters which we optimize to fit variational posterior 
to the exact posterior. 
We usually use Kullback-Leibler divergence.
(don’t worry about the difficult sounding things)

Variational inference
p.z j x/

KL.q.zI ��/ jjp.z j x//

�init

��q.zI �/

Ñ VI solves inference with optimization.
(Contrast this with MCMC.)

Ñ Posit a variational family of distributions over the latent variables,

q(z;⌫)

Ñ Fit the variational parameters ⌫ to be close (in KL) to the exact posterior.
(There are alternative divergences, which connect to algorithms like EP, BP, and others.)
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Variational inference

We can use any distribution 𝑞7(𝑧) for as long as 
◦ We can sample from it 
◦ We can compute and its gradient w.r.t 𝜙

We will use the easiest form possible
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Training with variational inference

What do we use as the training objective if the marginal log-likelihood is 
intractable? 

The variational posterior induces a variational lower bound on the 
marginal log-likelihood. 

We train a model with VI by maximizing variational lower bound 
◦ w.r.t. both the model parameters 𝜃 and the variational parameters  𝜙.

max log 𝑝!(𝑥)
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Important: How to arrive at the variational lower bound

For any density 𝑞B(𝑧) as long as 𝑞B(𝑧) > 0, we have

log 𝑝! 𝑥 = log3𝑝! 𝑥, 𝑧 𝑑𝑧 = log3𝑞B(𝑧)
𝑝! 𝑥, 𝑧
𝑞B(𝑧)

𝑑𝑧

≥ 3𝑞B(𝑧) log
𝑝! 𝑥, 𝑧
𝑞B(𝑧)

𝑑𝑧

= 𝐸8"()) log
𝑝! 𝑥, 𝑧
𝑞B(𝑧)

log 𝐸#!(%) 𝑓(𝑧) ≥ 𝐸#!(%) log 𝑓(𝑧)

Jensen’s inequality

variational lower bound
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Variational lower bound

Therefore, for any such 𝑞B(𝑧)

We now can maximize ℒ !,B 𝑥 instead of log 𝑝!(𝑥).

ℒ !,B 𝑥 = 𝐸8"()) log
𝑝! 𝑥, 𝑧
𝑞B(𝑧)

≤ log 𝑝!(𝑥)
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Variational lower bound

We design a variational posterior 𝑞B(𝑧|𝑥) as 𝑞B 𝑧 (remember q only came from “multiplying by 1”):

which is called Evidence Lower Bound (ELBO), the simplest and widely
used variational lower bound.

Higher ELBO → smaller difference to true 𝑝!(𝑧|𝑥)→ better latent 
representation
Higher ELBO→ gap to log-likelihood tightens → better density model

ℒ !,B 𝑥 = 𝐸8"()|') log
𝑝! 𝑥, 𝑧
𝑞B(𝑧|𝑥)
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Derive ELBO in a different way

KL 𝑞B(𝑧|𝑥) ∥ 𝑝!(𝒛|𝒙) = 3𝑞B(𝑧|𝑥) (log 𝑞B 𝒛|𝒙 − log 𝑝! 𝑧|𝑥 ) 𝑑𝒛

= 3𝑞B 𝑧|𝑥 (log 𝑞B 𝒛|𝒙 − log
𝑝! 𝑥 𝑧 𝑝(𝑧)

𝑝(𝑥)
) 𝑑𝒛

= 3𝑞G 𝑧|𝑥 (log 𝑞B 𝒛|𝒙 − log 𝑝! 𝑥 𝑧 − log 𝑝 𝑧 + log 𝑝(𝑥)) 𝑑𝒛

= −𝔼8" )|' log 𝑝! 𝑥 𝑧 + 𝐾𝐿 𝑞B 𝒛 ||𝑝(𝑧) + log 𝑝(𝒙) ≥ 0

log 𝑝(𝒙) ≥ 𝔼8" )|' log 𝑝! 𝑥 𝑧 − 𝐾𝐿 𝑞B 𝑧|𝑥 ||𝑝(𝑧)

Start with KL of q and p
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Entropy regularization

We can also expand the ELBO as

𝔼$' 𝒛 log
𝑝 𝒙, 𝒛
𝑞& 𝒛 = 𝔼$ 𝒛 log 𝑝(𝒙, 𝒛) − 𝔼$ 𝒛 log 𝑞& 𝒛

= 𝔼$' 𝒛 log 𝑝(𝒙, 𝒛) + 𝐻(𝑞&(𝒛))

where H(⋅) is the entropy

Maximising ELBO: increases likelihood of data and latents, and maintains enough 
entropy (‘uncertainty’) in the distribution of latents
◦ Avoiding latents to collapse to point estimates (𝒛 as single values) 
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Variational gap

Rewriting the ELBO:

ℒ !,B 𝑥 = 𝐸8"()) log
𝑝! 𝑥, 𝑧
𝑞B(𝑧|𝑥)

= 𝐸8"()) log
𝑝! 𝑧|𝑥 𝑝! 𝑥
𝑞B(𝑧|𝑥)

= 𝐸8"()|') log 𝑝! 𝑥 + 𝐸8"()|') log
𝑝! 𝑧|𝑥
𝑞B(𝑧|𝑥)

= log 𝑝! 𝑥 − 𝐾𝐿(𝑞B(𝑧|𝑥)||𝑝! 𝑧|𝑥 )



UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES                                                                                    DEEPER INTO DEEP 
LEARNING AND OPTIMIZATIONS - 53

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 53 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 53 VISLabDEEP LEARNING ONE - 53 VISLab

Variational gap

This means maximizing ℒ !,B 𝑥 w.r.t. 𝜙 is equivalent to minimizing

which is known as the variational gap, because it is the difference 
between log 𝑝! 𝑥 and the variational bound ℒ !,B 𝑥

ℒ !,B 𝑥 = log 𝑝! 𝑥 − 𝐾𝐿(𝑞B(𝑧|𝑥)||𝑝! 𝑧|𝑥 )

𝐾𝐿(𝑞B(𝑧|𝑥)||𝑝! 𝑧|𝑥 ) log 𝑝( 𝑥 does not depend on 𝜙
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Fitting the variational posterior 
We can fit the variational posterior to the exact posterior by maximizing the
ELBO w.r.t. 𝜙, which minimizes the

This is remarkable because we cannot compute 𝐾𝐿(𝑞B(𝑧|𝑥)||𝑝! 𝑧|𝑥 ) or even
𝑝! 𝑧|𝑥 .

ELBO is the difference between two intractable quantities, which is tractable!!!

𝐾𝐿(𝑞B(𝑧|𝑥)||𝑝! 𝑧|𝑥 )

ℒ !,B 𝑥 = log 𝑝! 𝑥 − 𝐾𝐿(𝑞B(𝑧|𝑥)||𝑝! 𝑧|𝑥 )
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Fitting the variational posterior 

If the variational distribution family is expressive enough, the ELBO is 
maximized w.r.t. 𝜙, then the variational posterior is equal to the exact 
posterior (and the variational gap is zero).

By updating the variational parameters 𝜙 to increase ELBO, 
◦ makes the variational distribution closer the true posterior
◦ Improves the variational approximation without affecting the model 

ℒ !,B 𝑥 = log 𝑝! 𝑥 − 𝐾𝐿(𝑞B(𝑧|𝑥)||𝑝! 𝑧|𝑥 )



UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES                                                                                    DEEPER INTO DEEP 
LEARNING AND OPTIMIZATIONS - 56

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 56 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 56 VISLabDEEP LEARNING ONE - 56 VISLab

Training the model

When we update the model parameters 𝜃 to increase the ELBO 

log 𝑝! 𝑥 will increase and/or 

𝐾𝐿(𝑞B(𝑧|𝑥)||𝑝! 𝑧|𝑥 ) will decrease

--> We should use the most expressive variational posterior we can.
◦ how to choose the variational posterior?

ℒ !,B 𝑥 = log 𝑝! 𝑥 − 𝐾𝐿(𝑞B(𝑧|𝑥)||𝑝! 𝑧|𝑥 )



UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES                                                                                    DEEPER INTO DEEP 
LEARNING AND OPTIMIZATIONS - 57

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 57 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 57 VISLabDEEP LEARNING ONE - 57 VISLab

Where are we?

oAutoencoders: nice idea but does not give us probabilities
oIdea 1: let’s model it with latent variables: z -> x
o If we simply fix p(z) in some manner, p(x) can be computed as p(x|z)p(z)
oNice

oSo how do we do inference (going from observations to model parameters)?
oWe do this by learning p(z|x): learn which z was used for a given x
oHowever the “normalize across data” integral is intractable to compute

oBy using another probability distribution and Jensen’s inequality, we can arrive at a 
lower bound on the quantity we want to optimize
oThis ELBO is given by ℒ #,% 𝑥 = 𝐸&!(() log

*" +,(
&!((|+)

= 𝐸&!(() log 𝑝# 𝑥, 𝑧 − 𝐾𝐿(𝑞% 𝑧|𝑥 ||𝑝(𝑧))

oWe have also quantified the gap of ELBO to p(x) to be 𝐾𝐿(𝑞% 𝑧|𝑥 ||𝑝(𝑧|𝑥))
oNow: how to choose and optimize q?
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Choosing the form of the variational posterior 

The default choice is a fully factorized distribution

In classic VI, this is known as the mean field approximation. 
Several options for more expressive posteriors: 
◦ Mixture distributions 
◦ Gaussian with a non-diagonal covariance matrix 
◦ Autoregressive 
◦ Flow-based 

Trade off between training speed and approximation quality

𝑞B(𝑧|𝑥) = ∏-𝑞B(𝑧-|𝑥)
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Amortized variational inference

The posterior distribution 𝑝(𝑧|𝑥) is different for each observation 𝑥
◦ each 𝑥 has its own latent distribution over 𝑧

In classic variational inference, we learn a different set of variational
parameters 𝜙 for each datapoint using iterative optimization.
◦ 𝜙 represents 𝜇 and 𝜎 for Gaussian distributions.

We adopt the amortized inference technique: much more efficient
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Amortized variational inference

Parameterized function: from observation space to parameters of the 
approximate posterior
◦ instead of optimizing a set of free parameters

For this: a neural network: x as input, and outputs the 𝜇 and 𝜎 for 𝑧
◦ the neural network is shared by different observations!
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Amortized variational inference

Then optimize the parameters of amortized neural networks instead of 
the individual parameters of each observation.
◦ e.g., 𝜙 represents the network weights now!
◦ trained jointly with the model by maximizing the ELBO. 

Amortized inference can cause an amortization gap (talked about later)
◦ a reason for suboptimality
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Benefits of using amortization

First, the number of variational parameters is constant w.r.t. to the dataset size!
◦ it is the size of the inference network
◦ we only need to specify the parameters of the network

Second, for new observation, all we need to do is to pass it through the network, 
◦ we have an approximate posterior distribution over its associated latent variables!
◦ At the constant cost of a forward pass through a network (no optimization)
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Variational vs. exact inference

What did we gain by using variational inference?
◦ Inference in an efficient and principled way. 
◦ Freedom in model design 
◦ Inference is fast compared to MCMC methods. 

What did we lose?
◦ VI can make the model effectively less expressive 
◦ thus lead to suboptimal performance. 



UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES                                                                                    DEEPER INTO DEEP 
LEARNING AND OPTIMIZATIONS - 64

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 64 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 64 VISLabDEEP LEARNING ONE - 64 VISLab

Maximizing the ELBO

Our objective is to maximize the ELBO 

w.r.t. the model parameter 𝜃 and variational parameter 𝜙.
It is non-convex optimization
We need to compute the gradients.
In modern variational inference, we estimate gradients using Monte 
Carlo sampling. 

ℒ !,B 𝑥 = 𝐸8"()) log
𝑝! 𝑥, 𝑧
𝑞B(𝑧|𝑥)
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Take 3 min and discuss with your neighbor the following points 
(think about what is the main idea, what difficult thing to understand, etc.)

1) Generative models, Bayes’ rule

2) Jensen’s inequality 

3) Inference, variational inference and amortization
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Gradient w.r.t. the model parameters

Gradient with regards to 𝜃:

We simply generate one or more samples from the variational posterior 
and average the resulting gradients of the log-joint 

∇!ℒ !,B 𝑥 =∇!𝐸8"()|') log
%# ',)
8"()|')

= 𝐸8"()|') ∇!𝑝! 𝑥, 𝑧

=#J∑K0#
J ∇!𝑝!(𝑥, 𝑧K) with 𝑧K ~ 𝑞B(𝑧|𝑥)
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Gradient w.r.t. variational parameters

Estimating the gradient w.r.t. 𝜙 is nontrivial
◦ using samples from the variational posterior which depends on 𝜙

◦ which involves in gradients of an expectation

◦ One last trick to make this all work

∇Bℒ !,B 𝑥 =∇B𝐸8"()|') log
%# ',)
8"()|')

= ???

∇B𝐸8"()|') 𝑓(𝑧)
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Gradients of expectations 

REINFORCE / likelihood-ratio estimator 
◦ Very general 
◦ Applicable to both discrete and continuous latent variables 
◦ Can handle non-differentiable function 𝑓(𝑧)

Reparameterization 
◦ Less general 
◦ Applicable only to continuous latent variables 
◦ Requires  𝑓(𝑧) to be differentiable
◦ Tends to have relatively low variance 

∇B𝐸8"()|') 𝑓(𝑧)
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Reparameterization trick 

We reparametrize a sample from 𝑞B(𝑧|𝑥) by expressing it as a function of 
a sample 𝜖 from some fixed distribution 𝑝(𝜖) :

𝑔(𝜖, 𝜙) needs to be differentiable w.r.t. 𝜙

𝑧 = 𝑔(𝜖, 𝜙)

∇B𝐸8"()) 𝑓(𝑧) = ∇B𝐸%(L) 𝑓(𝑔(𝜖, 𝜙))

= 𝐸%(L) ∇B𝑓(𝑔(𝜖, 𝜙))

= 𝐸%(L) ∇)𝑓(𝑧)∇B𝑔(𝜖, 𝜙)

𝑝(𝜖) does not depend on 𝜙

Chain rule
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Reparameterization trick 

The reparameterization trick essentially moves the dependence on the 
distribution parameters inside the expectation. 
◦ This can be seen as propagating gradients through 𝑧
◦ To get the correct gradients, the function 𝑔(𝜖, 𝜙)mapping  𝜖 to 𝑧 has to be

differentiable w.r.t. the distribution parameters 𝜙.

Reparameterizing a Gaussian variable:

Note that this mapping from 𝜖 to 𝑧 is differentiable w.r.t. both 
parameters of the distribution, as required.

𝑧 ~ Ν(𝜇, 𝜎)

𝑧 = µ + 𝜖 ⊙ σ , with 𝜖 ~𝑁(0, 𝐼)
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Reparameterization trick visualised 
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Where are we?
oAutoencoders: nice idea but does not give us probabilities

oIdea 1: let’s model it with latent variables: z -> x
o If we simply fix p(z) in some manner, p(x) can be computed as p(x|z)p(z)
o Nice

oSo how do we do inference (going from observations to model parameters)?
o We do this by learning p(z|x): learn which z was used for a given x
o However the “normalize across data” integral is intractable to compute

oBy using another probability distribution and Jensen’s inequality, we can arrive at a lower bound on the quantity we want to optimize
o This ELBO is given by ℒ !,# 𝑥 = 𝐸$!(&) log

(" ),&
$!(&|))

= 𝐸$!(&) log 𝑝! 𝑥, 𝑧 − 𝐾𝐿(𝑞# 𝑧|𝑥 ||𝑝(𝑧))

o We have also quantified the gap of ELBO to p(x) to be 𝐾𝐿(𝑞# 𝑧|𝑥 ||𝑝(𝑧|𝑥))
o Now how to choose and optimize q?

oWe can choose any simple q, but optimization requires difficult gradient of an expectation involving 
the variational parameters that we wish to take gradients from
o Broader context: sampling is a non-differentiable computation. But we can approximate it with one sample that carries the 

same mean and variation
o Key idea: reparametrize z: have generic, stochastic ε and learn the scales and shifts (for which gradients can flow) 
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Variational autoencoders

A generative model with continuous latent variables: 
The likelihood and the variational posterior are neural networks.
Both the prior and the variational posterior are usually fully factorized Gaussians. 
VAEs are trained using amortized variational inference.
Take the advantage of the reparameterization trick. 
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Variational autoencoders 
Rewrite the ELBO as follows:

The first term measures how well the model predicts / reconstructs an 
observation from a sample from the variational posterior. 
◦ Known as the negative reconstruction error. 

The second term acts as a regularizer, pushing the variational posterior 
towards the prior. 
◦ It measures the amount of information about the observation in the latents. 
◦ Often computed analytically. 

ℒ !,B 𝑥 = 𝐸8"()) log 𝑝!(𝑥|𝑧) − 𝐾𝐿(𝑞B(𝑧|𝑥)||𝑝!(𝑧))
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Quiz: what problems might happen with the reconstructions?

1) They might be risk averse and not have sharp edges
2) Sampling at every location will yield a noisy image
3) Very high or low colors (close to 0 or 255) will be rare
4) Neighboring pixels will not have any dependencies

ℒ !,B 𝑥 = 𝐸8"()) log 𝑝!(𝑥|𝑧) − 𝐾𝐿(𝑞B(𝑧|𝑥)||𝑝!(𝑧))
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Variational autoencoders 

𝑞B(𝑧|𝑥) is implemented as the encoder network, also known as the
recognition network
𝑝!(𝑥|𝑧) is implemented as the decoder network

Both encoder and decoder networks are amortized networks

ℒ !,B 𝑥 = 𝐸8"()) log 𝑝!(𝑥|𝑧) − 𝐾𝐿(𝑞B(𝑧|𝑥)||𝑝!(𝑧))
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Intuition of the KL regularizer:

Make generative process have two main properties:
Continuity: two close points in the latent space should not give two 
completely different contents once decoded (thanks noise!)
Completeness: for a chosen distribution, a point sampled from the latent 
space should give “meaningful” content once decoded.
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Inference suboptimality

The quality of approximate inference is determined by two factors 
◦ Variational posterior: The capacity of the variational distribution to match the true 

posterior
◦ Amortized inference: The ability of the amortized network to produce good variational 

parameters for each datapoint. 

Observation:
◦ divergence from the true posterior is often due to imperfect amortized inference network
◦ rather than the limited complexity of the approximating distribution. 
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Inference Gaps

Approximation Gap 
◦ Inability of the variational distribution to approximate

the true posterior 
◦ An expressive variational distribution → small

approximation gap

Amortization Gap
◦ Limited capacity of the amortization/recognition 

network to generalize inference over all datapoints
◦ Stronger networks → small amortization gap

Inference Suboptimality in Variational Autoencoders

Chris Cremer 1 Xuechen Li 1 David Duvenaud 1

Abstract
Amortized inference allows latent-variable mod-
els trained via variational learning to scale to large
datasets. The quality of approximate inference is
determined by two factors: a) the capacity of the
variational distribution to match the true poste-
rior and b) the ability of the recognition network
to produce good variational parameters for each
datapoint. We examine approximate inference in
variational autoencoders in terms of these factors.
We find that divergence from the true posterior
is often due to imperfect recognition networks,
rather than the limited complexity of the approx-
imating distribution. We show that this is due
partly to the generator learning to accommodate
the choice of approximation. Furthermore, we
show that the parameters used to increase the ex-
pressiveness of the approximation play a role in
generalizing inference rather than simply improv-
ing the complexity of the approximation.

1. Introduction
In this paper, we analyze inference suboptimality: the mis-
match between the true and approximate posterior. More
specifically, we are interested in understanding what factors
cause the gap between the marginal log-likelihood and the
evidence lower bound (ELBO) in variational autoencoders
(VAEs, Kingma & Welling (2014); Rezende et al. (2014)).
We refer to this as the inference gap. Moreover, we break
down the inference gap into two components: the approxi-
mation gap and the amortization gap. The approximation
gap comes from the inability of the variational distribution
family to exactly match the true posterior. The amortiza-
tion gap refers to the difference caused by amortizing the
variational parameters over the entire training set, instead of
optimizing for each training example individually. We refer
the reader to Table 1 for the definitions of the gaps and to

1Department of Computer Science, University of Toronto,
Toronto, Canada. Correspondence to: Chris Cremer <ccre-
mer@cs.toronto.edu>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

Fig. 1 for a simple illustration of the gaps. In Fig. 1, L[q]
refers to the ELBO evaluated using an amortized distribu-
tion q, as is typical of VAE training. In contrast, L[q⇤] is the
ELBO evaluated using the optimal approximation within its
variational family.

There has been significant work on improving variational
inference in VAEs through the development of expressive ap-
proximate posteriors (Rezende & Mohamed, 2015; Kingma
et al., 2016; Ranganath et al., 2016; Tomczak & Welling,
2016; 2017). These works have shown that with more ex-
pressive approximate posteriors, the model learns a better
distribution over the data. Our study aims to gain a bet-
ter understanding of the relationship between expressive
approximations and improved generative models.

Our experiments investigate how the choice of encoder,
posterior approximation, decoder, and optimization affect
the approximation and amortization gaps. We train VAE
models in a number of settings on the MNIST (LeCun et al.,
1998), Fashion-MNIST (Xiao et al., 2017), and CIFAR-10
(Krizhevsky & Hinton, 2009) datasets.

Our contributions are: a) we investigate inference subopti-
mality in terms of the approximation and amortization gaps,
providing insight to guide future improvements in VAE in-
ference, b) we quantitatively demonstrate that the learned
generative model accommodates the choice of approxima-
tion, and c) we demonstrate that parameterized functions
that improve the expressiveness of the approximation play a
significant role in reducing amortization error.

log $(&)
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Figure 1. Gaps in Inference
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Encoder

Encoder network

Sample z from

Input Data
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Decoder

Sample x|z from

Decoder network
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Generating Data

Use decoder, and sample from the prior

Sample z from

Sample x|z from
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Dimensionality of latent space

(a) Learned Frey Face manifold (b) Learned MNIST manifold

Figure 4: Visualisations of learned data manifold for generative models with two-dimensional latent
space, learned with AEVB. Since the prior of the latent space is Gaussian, linearly spaced coor-
dinates on the unit square were transformed through the inverse CDF of the Gaussian to produce
values of the latent variables z. For each of these values z, we plotted the corresponding generative
p✓(x|z) with the learned parameters ✓.

(a) 2-D latent space (b) 5-D latent space (c) 10-D latent space (d) 20-D latent space

Figure 5: Random samples from learned generative models of MNIST for different dimensionalities
of latent space.

B Solution of �DKL(q�(z)||p✓(z)), Gaussian case

The variational lower bound (the objective to be maximized) contains a KL term that can often be
integrated analytically. Here we give the solution when both the prior p✓(z) = N (0, I) and the
posterior approximation q�(z|x(i)) are Gaussian. Let J be the dimensionality of z. Let µ and �
denote the variational mean and s.d. evaluated at datapoint i, and let µj and �j simply denote the
j-th element of these vectors. Then:

Z
q✓(z) log p(z) dz =

Z
N (z;µ,�2) logN (z;0, I) dz

= �J

2
log(2⇡)� 1

2

JX

j=1

(µ2
j + �2

j )
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Face generation

Why blurry? (Actually noisy) 
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VAE variants
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Conditional VAEs

Model the distribution of output space as a generative model conditioned 
on the input observation
◦ The input observations modulate the prior on Gaussian latent variables that generate 

the outputs. 

Used for structured output predictions, e.g., object segmentation
(a) CNN

YX

Z

pᶚ(y|x,z)

pᶚ(z|x)

(b) CGM (generation)

YX

Z

qᶰ(z|x,y)

(c) CGM (recognition) (d) recurrent connection

Figure 1: Illustration of the conditional graphical models (CGMs). (a) the predictive process of
output Y for the baseline CNN; (b) the generative process of CGMs; (c) an approximate inference
of Z (also known as recognition process [16]); (d) the generative process with recurrent connection.

Another way to evaluate the CGMs is to compare the conditional likelihoods of the test data. A
straightforward approach is to draw samples z’s using the prior network and take the average of the
likelihoods. We call this method the Monte Carlo (MC) sampling:

p✓(y|x) ⇡
1

S

SX

s=1

p✓(y|x, z(s)), z(s) ⇠ p✓(z|x) (6)

It usually requires a large number of samples for the Monte Carlo log-likelihood estimation to be
accurate. Alternatively, we use the importance sampling to estimate the conditional likelihoods [24]:

p✓(y|x) ⇡
1

S

SX

s=1

p✓(y|x, z(s))p✓(z(s)|x)
q�(z(s)|x,y)

, z(s) ⇠ q�(z|x,y) (7)

4.2 Learning to predict structured output
Although the SGVB learning framework has shown to be effective in training deep generative mod-
els [16, 24], the conditional auto-encoding of output variables at training may not be optimal to
make a prediction at testing in deep CGMs. In other words, the CVAE uses the recognition network
q�(z|x,y) at training, but it uses the prior network p✓(z|x) at testing to draw samples z’s and make
an output prediction. Since y is given as an input for the recognition network, the objective at train-
ing can be viewed as a reconstruction of y, which is an easier task than prediction. The negative KL
divergence term in Equation (5) tries to close the gap between two pipelines, and one could consider
allocating more weights on the negative KL term of an objective function to mitigate the discrepancy
in encoding of latent variables at training and testing, i.e., �(1 + �)KL (q�(z|x,y)kp✓(z|x)) with
� � 0. However, we found this approach ineffective in our experiments.

Instead, we propose to train the networks in a way that the prediction pipelines at training and testing
are consistent. This can be done by setting the recognition network the same as the prior network,
i.e., q�(z|x,y) = p✓(z|x), and we get the following objective function:

eLGSNN(x,y; ✓,�) =
1

L

LX

l=1

log p✓(y|x, z(l)) , where z(l) = g✓(x, ✏
(l)), ✏(l) ⇠ N (0, I) (8)

We call this model Gaussian stochastic neural network (GSNN).3 Note that the GSNN can be de-
rived from the CVAE by setting the recognition network and the prior network equal. Therefore,
the learning tricks, such as reparameterization trick, of the CVAE can be used to train the GSNN.
Similarly, the inference (at testing) and the conditional likelihood estimation are the same as those
of CVAE. Finally, we combine the objective functions of two models to obtain a hybrid objective:

eLhybrid = ↵ eLCVAE + (1� ↵) eLGSNN, (9)
where ↵ balances the two objectives. Note that when ↵ = 1, we recover the CVAE objective; when
↵ = 0, the trained model will be simply a GSNN without the recognition network.

4.3 CVAE for image segmentation and labeling
Semantic segmentation [5, 23, 6] is an important structured output prediction task. In this sec-
tion, we provide strategies to train a robust prediction model for semantic segmentation problems.
Specifically, to learn a high-capacity neural network that can be generalized well to unseen data, we
propose to train the network with 1) multi-scale prediction objective and 2) structured input noise.

3If we assume a covariance matrix of auxiliary Gaussian latent variables ✏ to 0, we have a deterministic
counterpart of GSNN, which we call a Gaussian deterministic neural network (GDNN).

4
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Conditional VAEs

The ELBO for conditional VAE

It is trained to maximize the conditional log-
likelihood 
The conditional variational autoencoder has an 
extra input to both the encoder and the decoder.

ℒ !,B 𝑥 = 𝐸8"()|Q,') log 𝑝!(𝑦|𝑥, 𝑧) − 𝐾𝐿(𝑞B(𝑧|𝑦, 𝑥)||𝑝!(𝑧|𝑥))
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Conditional VAEs

Generated samples with (left) 1 quadrant and (right) 2 quadrants for an input 

ground
-truth

NN

CVAE

ground
-truth

NN

CVAE

Figure 3: Visualization of generated samples with (left) 1 quadrant and (right) 2 quadrants for an
input. We show in each row the input and the ground truth output overlaid with gray color (first),
samples generated by the baseline NNs (second), and samples drawn from the CVAEs (rest).

For qualitative analysis, we visualize the generated output samples in Figure 3. As we can see, the
baseline NNs can only make a single deterministic prediction, and as a result the output looks blurry
and doesn’t look realistic in many cases. In contrast, the samples generated by the CVAE models
are more realistic and diverse in shape; sometimes they can even change their identity (digit labels),
such as from 3 to 5 or from 4 to 9, and vice versa.

We also provide a quantitative evidence by estimating the conditional log-likelihoods (CLLs) in Ta-
ble 1. The CLLs of the proposed models are estimated in two ways as described in Section 4.1. For
the MC estimation, we draw 10, 000 samples per example to get an accurate estimate. For the im-
portance sampling, however, 100 samples per example were enough to obtain an accurate estimation
of the CLL. We observed that the estimated CLLs of the CVAE significantly outperforms the base-
line NN. Moreover, as measured by the per pixel performance gap, the performance improvement
becomes more significant as we use smaller number of quadrants for an input, which is expected as
the input-output mapping becomes more diverse.

5.2 Visual Object Segmentation and Labeling
Caltech-UCSD Birds (CUB) database [36] includes 6, 033 images of birds from 200 species with
annotations such as a bounding box of birds and a segmentation mask. Later, Yang et al. [37]
annotated these images with more fine-grained segmentation masks by cropping the bird patches
using the bounding boxes and resized them into 128 ⇥ 128 pixels. The training/test split proposed
in [36] was used in our experiment, and for validation purpose, we partition the training set into 10
folds and cross-validated with the mean intersection over union (IoU) score over the folds. The final
prediction on the test set was made by averaging the posterior from ensemble of 10 networks that are
trained on each of the 10 folds separately. We increase the number of training examples via “data
augmentation” by horizontally flipping the input and output images.

We extensively evaluate the variations of our proposed methods, such as CVAE, GSNN, and the
hybrid model, and provide a summary results on segmentation mask prediction task in Table 2.
Specifically, we report the performance of the models with different network architectures and train-
ing methods (e.g., multi-scale prediction or noise-injection training).

First, we note that the baseline CNN already beat the previous state-of-the-art that is obtained by
the max-margin Boltzmann machine (MMBM; pixel accuracy: 90.42, IoU: 75.92 with GraphCut
for post-processing) [37] even without post-processing. On top of that, we observed significant per-
formance improvement with our proposed deep CGMs.5 In terms of prediction accuracy, the GSNN
performed the best among our proposed models, and performed even better when it is trained with
hybrid objective function. In addition, the noise-injection training (Section 4.3) further improves
the performance. Compared to the baseline CNN, the proposed deep CGMs significantly reduce the
prediction error, e.g., 21% reduction in test pixel-level accuracy at the expense of 60% more time
for inference.6 Finally, the performance of our two winning entries (GSNN and hybrid) on the vali-
dation sets are both significantly better than their deterministic counterparts (GDNN) with p-values
less than 0.05, which suggests the benefit of stochastic latent variables.

5As in the case of baseline CNNs, we found that using the multi-scale prediction was consistently better
than the single-scale counterpart for all our models. So, we used the multi-scale prediction by default.

6Mean inference time per image: 2.32 (ms) for CNN and 3.69 (ms) for deep CGMs, measured using
GeForce GTX TITAN X card with MatConvNet; we provide more information in the supplementary material.
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Beta-VAE

“More” Disentangled representations
◦ Each variable in the inferred latent representation 𝑧 is only sensitive to one single 

generative factor
◦ relatively invariant to other factors

Good interpretability and easy generalization to a variety of tasks.
◦ e.g., model trained on photos of human faces might capture hair colour, hair length, 

etc.

The loss function of beta-VAE

ℒ !,B 𝑥 = 𝐸8"()) log 𝑝!(𝑥|𝑧) − 𝜷𝐾𝐿(𝑞B(𝑧|𝑥)||𝑝!(𝑧))
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Beta-VAE

More steerable/interpretable

Published as a conference paper at ICLR 2017

Figure 1: Manipulating latent variables on celebA: Qualitative results comparing disentangling
performance of �-VAE (� = 250), VAE (Kingma & Welling, 2014) (� = 1) and InfoGAN (Chen
et al., 2016). In all figures of latent code traversal each block corresponds to the traversal of a single
latent variable while keeping others fixed to either their inferred (�-VAE, VAE and DC-IGN where
applicable) or sampled (InfoGAN) values. Each row represents a different seed image used to infer
the latent values in the VAE-based models, or a random sample of the noise variables in InfoGAN.
�-VAE and VAE traversal is over the [-3, 3] range. InfoGAN traversal is over ten dimensional
categorical latent variables. Only �-VAE and InfoGAN learnt to disentangle factors like azimuth
(a), emotion (b) and hair style (c), whereas VAE learnt an entangled representation (e.g. azimuth is
entangled with emotion, presence of glasses and gender). InfoGAN images adapted from Chen et al.
(2016). Reprinted with permission.

approaches to disentangled factor learning have not scaled well (Schmidhuber, 1992; Desjardins
et al., 2012; Tang et al., 2013; Cohen & Welling, 2014; 2015).

Recently a scalable unsupervised approach for disentangled factor learning has been developed,
called InfoGAN (Chen et al., 2016). InfoGAN extends the generative adversarial network (GAN)
(Goodfellow et al., 2014) framework to additionally maximise the mutual information between a
subset of the generating noise variables and the output of a recognition network. It has been reported
to be capable of discovering at least a subset of data generative factors and of learning a disentangled
representation of these factors. The reliance of InfoGAN on the GAN framework, however, comes
at the cost of training instability and reduced sample diversity. Furthermore, InfoGAN requires
some a priori knowledge of the data, since its performance is sensitive to the choice of the prior
distribution and the number of the regularised noise variables. InfoGAN also lacks a principled
inference network (although the recognition network can be used as one). The ability to infer the
posterior latent distribution from sensory input is important when using the unsupervised model in
transfer learning or zero-shot inference scenarios. Hence, while InfoGAN is an important step in the
right direction, we believe that further improvements are necessary to achieve a principled way of
using unsupervised learning for developing more human-like learning and reasoning in algorithms as
described by Lake et al. (2016).

Finally, there is currently no general method for quantifying the degree of learnt disentanglement.
Therefore there is no way to quantitatively compare the degree of disentanglement achieved by
different models or when optimising the hyperparameters of a single model.
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VQ-VAE and VQ-VAE2

Neural Discrete Representation Learning. Van den Oord et al. NeurIPS 2017


