A robot wrote this entire article. Are you
scared yet, human?

g

We asked GPT-3, OpenAl's powerful new language generator, to
write an essay for us from scratch. The assignment? To

’-‘ 6. o 2




Organisation

o Guest Lecture on 6" December will be remote, we will have
Prof. Andrea Vedaldi from the University of Oxford
talking about Recent trends in unsupervised learning for 3D
https://uva-live.zoom.us/j/6466222109

o Please be there in-person for lecture on the 13" December (teaching recording)
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Organisation

o Thanks for filling out mid-way feedback

BN 1 (nothappy) MEE2 W3 N4 [ 5 (very happy) Summary

Like Like to see changed

lectures interesting and in-depth
diversity of topics, challenging but doable
application and coding in assignments
quizzes

engagement of TAs

tutorials: well explained, nice code

schedule is tough

more depth, less breadth
assignments too much work/too tough
tutorial is a bit too quick

fixes/hints for assignments come late

Lectures Tutorials Werkcolleges Assignments

o Third assignment is being edited to be lighter load
o Schedule: we understand. Aim to accommodate this esp. in teaching atter lectures

o More “depth”: Lecture 8, 9, 10: are indeed more depth than breadth.

o Many more individual points received & taken into account. Thanks again.
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Lecture overview

Generative Modelling
Autoencoders

Latent variable models
Variational inference
Variational autoencoders
Inference suboptimality

VAE variants
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What is generative modelling?

o Often in ML we talk about discriminative vs generative modelling
p(y1%) Vs p(x)
°p is a probability density function: high means x is likely.
o p is normalized: | p(x)dx = 1
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Why generative modelling?

Discriminative model: p is normalized for outputs, but not for inputs:

Generative model:
p is normalized for inputs

P(cat| )
P(cat | i)
—_—
g B - |
P(dog | )

P(dog|[#)

» P(cat| ) I

-
P(cat| R I
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Why generative modelling? More reasons

T, Wkt C=152r // uﬂ‘ [=Y u <Dr=ph =3n+as 45 as

A

® v const

o Modelling in other disciplines: aims to capture underlying processes e gy —ch (7 nL) A i
. . i : =m 7282 )
o Physics (Newton’s law --> planet motions) : A W L» % P n:, = ,:i
R-o U o R
o Economics (assumptions + free parameters that are fitted --> forecasts ) EEEE 0. E /w A+
G = 567 ‘/O’ ;",' v Mo = Ap=( JZﬂ_d)
o Mathematics, biology, geology, ... ReaoTh  wlabuio \
ac2 b=29 40 *n-K ’
o Benefits e e
. . : '}.," wqm’“l & = Acos(ot - k] 55 ‘ 6(@ Amc @ «f"z/a N
o Interpretable: because models are built in a manner easy to T g oo o
1 F) odir m fo=m
understand B e = enluw )
o Testable: if it fits data and is simple it’s likely to be good (c.f. Occam’s [ 7 a pawnco 404 Bos %7
s & S /m(n-o s ]
razor) DR A e T P

o Can help with discriminative models: e.g. more robust predictions
o For vision/language: “might” be similar to brain (predictive coding)
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Bayes rule: if we have generative models: we have it all

o We can get a conditional generative model for

. Recall Bayes’ Rule:
free once we have a generative model

Discriminative Model (Unconditional)

o Note: P Generative Model
o Previously we focussed on learning p(y|x) P(x | y) = (v | x) P(x)

o What we will do today and Friday: pg(x) P P(y)

o If true distribution of data is p*(x)

we wish to learn 6 s.t.: pg(x) = p*(x)
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A map of generative models

A

' Direct

can compute p(x) /

Explicit density

/ \approximate p(x) \

Maximum Likelihood
\ GAN Friday!

Implicit density

can only sample from p(x)

Tractable density

Approximate density

Markov Chain

-Fully visible belief nets

-NADE
-MADE
-PixelRNN

-Change of variables
models (nonlinear T({A

GSN
\

Variational

Markov Chain

Variational autoencod®r Boltzmann machine

Today!
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Autoencoders

Feedforward network with a bottleneck layer of fewer dimensions than the input
o Output layer with the same dimensionality as the input

o An autoencoder is used to learn etficient codings of unlabelled data

latent representation

Input x z . reconstructed input
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Autoencoders

An autoencoder has an encoder and a decoder

2] z||||z

Encoder Decoder

Encoder learns mapping from the data x to a low dimensional latent space
Decoder learns mapping back from latent space z to a reconstructed observation x

By itself, we have no assumptions about the architecture (in practice: CNNs with
transposed convolutions)
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Autoencoders

Train the model to use latent features to reconstruct the original data

2] zl|||a

A

L(x,2) = ||lx - Z|I?
Minimizing the difference between the input and the output (e.g. L2 loss per pixel)

Loss function does not use any labels
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Autoencoders: why though?

WHY?
o we don’t need to wait 8hours on 3

Lisa just to compute a not-very- ) = ' I I I ;
good identity function... /
o the key is the “bottleneck”

o which is of lower dimension than
the input

o thus it learns a compressed
representation

A not so useful bottleneck

. WHATISA
BOTTLENECK?
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Autoencoders for representation learning (ie use the encoder afterwards)

Learning lower-dimensional feature representations
> an unsupervised learning technique

This deep, lower dimensional space learns meaningful structures

o Remember --------------------- >

Lower dimensional space also sometimes called “manifold”
Here, rotation simply means going in one direction of this
manifold, and size changes are another direction.

The RGB space does not have this structure

Empirically we indeed see this

Bottleneck hidden layer

> encourages learning compressed representations (n.b.: compression is very related to learning)
> removes redundant information from the raw input

Reconstruction loss
o forces the latent representation to capture as much information about the data as possible
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Autoencoders for representation learning

Fig. 3. (A) The two- A 5 % 8
dimensional codes for 500 '
digits of each class produced
by taking the first two prin-
cipal components of all
60,000 training images.
(B) The two-dimensional
codes found by a 784-
1000-500-250-2 autoen-
coder. For an alternative
visualization, see (8).

CoOoONOOBEBWN—=-O

+00+4+0++0

PCA Autoencoder
2006 Science paper by Hinton and Salakhutdinov
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“Autoencoders” for representation learning (13years later): BigBiGAN

data
x~ P, %~G(z) discriminator D _ scores

@ @ @ IF Q Generated images:
0o | e e
DO @6

.. z~E(x ~ P, ~ 7
additional () =z~F

N

< Ad

I9podud
generator G

latents

Method Architecture Feature | Top-1 Top-5
BiGAN [4, 3%] AlexNet conv3 31.0 -
Motion Segmentation (MS) [27, 2] ResNet-101 AvePool 27.6 48.3
Exemplar (Ex) [5, 3] ResNet-101 AvePool 31.5 53.1
Relative Position (RP) [2, 3] ResNet-101 AvePool 36.2 59.2
Colorization (Col) [37, 3] ResNet-101 AvePool 39.6 625
Combination of MS+Ex+RP+Col [?] ResNet-101 AvePool - 69.3
CPC [235] ResNet-101 AvePool 48.7 73.6
Rotation [#, 21] RevNet-50 x4  AvePool 554 -
Efficient CPC [14] ResNet-170 AvePool 61.0 83.0
ResNet-50 AvePool 554 77.4
R ResNet-50 BN+CReLU | 56.6 78.6
RIERIGAN (G RevNet-50 x4  AvePool 608 814
RevNet-50 x4 BN+CReLU | 61.3 81.9

Table 2: Compariso igBi i et validation set against recent The linear probing/evalaton protocol mentioned in lecture 6:
competing approachef with a supervised logistic regression classifier[BigBiGAINTesults are selected freeze network, train linear layer

with early stopping based on highest accuracy on our train,,; subset of 10K training set images.
ResNet-50 results correspond to row ResNet (T £ LR) in Table 1, and RevNet-50 x4 corresponds to
RevNet x4 (1 £ LR).

--> Encoder is general purpose Large Scale Adversarial Representation Learning. Donahue et al. NeurIPS 2019

lgl UNIVERSITY OF AMSTERDAM DEEP LEARNING ONE - 17 VISLab




Dimensionality of latent space

Lower latent dimension — poorer reconstruction

Too high latent dimension — keeps irrelevant/noisy information

5D latent space Ground Truth

2D latent space

NT—~IJT-0ON~0
LPOARATTMARIV
ENT =~ ™o
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OO WI N UWmarm
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I Quiz: I

PCA is a motivating technique behind the first initial
AutoEncoders. What is true?

1)PCA can have local optima and should be run multiple times
2)PCA generally returns more interpretable features

3)PCA generally yields the same results as linear regression

4)PCA generally struggles with outliers
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PCA refresher ®

Imagine a big family dinner where everybody starts asking you about PCA.
First, you explain it to your great-grandmother; then to your grandmother;
then to your mother; then to your spouse; finally, to your daughter (a
mathematician). Each time the next person is less of a layman. Here is how
the conversation might go.

Great-grandmother: | heard you are studying "Pee-See-Ay". | wonder
what thatis...

You: Ah, it's just a method of summarizing some data. Look, we have some
wine bottles standing here on the table. We can describe each wine by its
colour, how strong it is, how old it is, and so on.

@
\ 3
@
@

| i‘l

L C O L O RO W [ N L[]

Vicwing Wine © wxe rouy

Visualization originally found here.

We can compose a whole list of different characteristics of each wine in oul
cellar. But many of them will measure related properties and so will be
redundant. If so, we should be able to summarize each wine with fewer
characteristics! This is what PCA does.

Grandmother: This is interesting! So this PCA thing checks what
characteristics are redundant and discards them?

You: Excellent question, granny! No, PCA is not selecting some
characteristics and discarding the others. Instead, it constructs some new
characteristics that turn out to summarize our list of wines well. Of course,
these new characteristics are constructed using the old ones; for example,
new characteristic might be computed as wine age minus wine acidity level
some other combination (we call them linear combinations).

In fact, PCA finds the best possible characteristics, the ones that summariz
the list of wines as well as only possible (among all conceivable linear
combinations). This is why it is so useful.

Mother: Hmmm, this certainly sounds good, but | am not sure |
understand. What do you actually mean when you say that these new
PCA characteristics "summarize" the list of wines?

You: | guess | can give two different answers to this question. The first ansv
is that you are looking for some wine properties (characteristics) that stront
differ across wines. Indeed, imagine that you come up with a property that i
the same for most of the wines - like the stillness of wine after being pouret
This would not be very useful, would it? Wines are very different, but your
new property makes them all look the same! This would certainly be a bad
summary. Instead, PCA looks for properties that show as much variation
across wines as possible.

The second answer is that you look for the properties that would allow you to

predict, or "reconstruct", the original wine characteristics. Again, imagine that

you come up with a property that has no relation to the original
characteristics - like the shape of a wine bottle; if you use only this new
property, there is no way you could reconstruct the original ones! This, again,
would be a bad summary. So PCA looks for properties that allow
reconstructing the original characteristics as well as possible.

Surprisingly, it turns out that these two aims are equivalent and so PCA can

kill two birds with one stone.

Mother: Hmmm, this certainly sounds good, but | am not sure |
understand. What do you actually mean when you say that these new
PCA characteristics "summarize" the list of wines?

You: | guess | can give two different answers to this question. The first answer
is that you are looking for some wine properties (characteristics) that strongly
differ across wines. Indeed, imagine that you come up with a property that is
the same for most of the wines - like the stillness of wine after being poured.
This would not be very useful, would it? Wines are very different, but your
new property makes them all look the same! This would certainly be a bad
summary. Instead, PCA looks for properties that show as much variation
across wines as possible.

The second answer is that you look for the properties that would allow you to
predict, or "reconstruct”, the original wine characteristics. Again, imagine that
you come up with a property that has no relation to the original
characteristics - like the shape of a wine bottle; if you use only this new
property, there is no way you could reconstruct the original ones! This, again,
would be a bad summary. So PCA looks for properties that allow
reconstructing the original characteristics as well as possible.

Surprisingly, it turns out that these two aims are equivalent and so PCA can
kill two birds with one stone.

Spouse: But darling, these two "goals" of PCA sound so different! Why
would they be equivalent?

You: Hmmm. Perhaps | should make a little drawing (takes a napkin and starts
scribbling). Let us pick two wine characteristics, perhaps wine darkness and
alcohol content -- | don't know if they are correlated, but let's imagine that
they are. Here is what a scatter plot of different wines could look like:

Read it in full here:
https://stats.stackexchange.com/quest
ions/2691/making-sense-of-principal-
component-analysis-eigenvectors-
eigenvalues



https://emojipedia.org/wine-glass/

Denoising autoencoders

o Add some noise to the input: X = x + ¢

o Then train autoencoder to reconstruct
original input x.

o “Denoising”; ~ augmentation-invariance

o Requires features that capture useful
structure in the input distribution.

o Resulting latent representations: stabler
against corruption of the input.

o Can be used for, e.g., old photographs

lgl UNIVERSITY OF AMSTERDAM
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Sparse autoencoders

@
o
)
[m)]
o
Qo
o
=

[
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=

oInclude more hidden units than input
(“overcomplete”)

\
—

olmpose sparsity constraints, e.g., [, on activations
in the hidden layer

L(x,x")+ Q(h)
oOr use only top-k units

oAn alternative way to introducing bottleneck
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Autoencoder applications

Autoencoders mostly used for dimensionality reduction
o In fact, linear autoencoders with W_in.T == W_out learn the same subspace as PCA

Autoencoders are a generic machine learning principle: use what you have
No need for prior knowledge about invariances/augmentations
Some applications in denoising and (a bit of) representation learning
But: Autoencoders are not probabilistic and not generative models

> They can reconstruct the input

> They cannot generate new data points
> They cannot tell you how probable one image is
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What we will arrive at in this lecture

The Variational Autoencoder (VAE) will solve those issues.
Learn latent features z from data; sample x from model p(z) to yield p(x|z)

p(z) often simply assumed to be Gaussian.

Autoencoder | ¥

VAE &«

7 is a latent variable
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Latent variable models

A latent variable model defines a distribution over observations x by
using a latent (unobserved) variable z

We specity
o The prior distribution p(z) for the latent variable
o The likelihood p(x|z) that connects the latent variable to the observation

The prior and the likelihood detine the joint distribution
p(x,2z) = p(x|z)p(2)

We will be interested in computing the marginal likelihood p(x)
and the posterior distribution p(z|x).

Likelihood vs probability. A critical difference between probability and likelihood is in the interpretation of what
is fixed and what can vary. In the case of a conditional probability, P(D | H), the hypothesis is fixed and the data are
free to vary. Likelihood, however, is the opposite. The likelihood of a hypothesis, L(H), is conditioned on the data,
as if they are fixed while the hypothesis can vary. The distinction is subtle, so it is worth repeating: For conditional
probability, the hypothesis is treated as a given, and the data are free to vary. For likelihood, the data are treated as
a given, and the hypothesis varies. (from [ntroduction to the Concept of Likelihood and Its Applications)

VISLab
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https://journals.sagepub.com/doi/full/10.1177/2515245917744314

Latent variable models

Think of latent variable value as explaining the observation.

To generate an observation from the model, we sample as follows:

z ~p(z) p(z)

x ~p(x|z) z

Next step: “Inference”
> The process going from observations x to the latent variable z

- We want to know the factors that generate the data

o (note: sometimes in ML, we also use inference to mean “test-time” (like
“inference speed”), but not here)

DEEP LEARNING ONE - 26
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Reminder: notes from ML.1

Unsupervised vs. Supervised learning

» Supervised
» Data D ={X,T}
» Goals f(x) ~ t,p(t|x)
» Classification (discrete) or regression e
(continuous) W&’* %mulg v

. \\/\}ﬂh‘“@A
» Unsupervised

» Data D ={X}

» Goals p(x),p(z|x) or p(x|z)

» Density estimation, clustering (discrete) or
dimensionality reduction (continuous)

fo ¥

Machine Learning 1 2
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Latent variable models

Latent variable @—‘ Observed variable
(=unobserved)

Model complex distributions with more tractable
representation by z

continuous:

o) = [ vl )iz = [ plal2)p(=)iz

discrete:

= Zp(w, z) = Zp(wIZ)p(Z)

Machine Learning 1 3
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Inference

Inference: computing the posterior distribution for given x:

p(x2) __ p(x2)
p(x) [pxz)dz'

This requires solving the important sub-problem of computing
the marginal likelihood of the observation:

p(z|x) =

p(x) = f p(x, 2)dz

which is usually intractable (we cannot sum up all points in a D dim. Space)
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Inference

Inference as inverse process of generation.

Generate pairs (x, z) from the model in two ways:

z ~ p(z) ol x ~p(x)

Since we have
x ~ p(x|z) z ~ p(z|x)

The joint distribution of these pairs is exactly the same, no matter how
they were generated. (Bayes’ rule)

p(x|z)p(z) = p(x,z) = p(zlx)p(x)

lgl UNIVERSITY OF AMSTERDAM DEEP LEARNING ONE - 29 VISLab



Why shall we do inference?

Explaining the observations

o inferring the posterior distribution for a datapoint allow us to determine which latent
configurations could have plausibly generated it

o This will allow us to generate new data points

Learning the generative model
o training latent variable models requires performing inference

Now, how do we do it?
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Inference via maximum likelihood

Maximum Likelihood: dominant estimation principle for probabilistic models
Given a set of data points {x;}, we define a model pg(x) to represent the data.

Find 0 that maximize the probability of data under the model:

N
OML = arg mgxz log pg (x;)
i=1

For latent variable models: no closed-form solution
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Reminder: Why the sum of logarithms?

Goal: p(x) = f(x,0), given dataset x1,i=1,...,N

0" = argmaxg [[; p(x;)
= argmaxgZ; log(p(x;))
= argmaxgZ; log( f(x;,0)),
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The gradient of max likelihood

Let's compute the gradient of the log-likelihood for a single datapoint:

Maths:
_ Vpe(x) [ Veps(x,z)dz ;
Vi logpg(x) = % - epZ(X) Vo log po(x) = V;f(e)g) )
_ fpé? (X, Z)V@ log py (x, Z)dz
po(x)

= /pe(Z|X)V9 log pg(x,z)dz

We need to compute the posterior distribution to compute the gradient!
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But: Exact inference is hard

Inference for continuous latent variables involves p(z|x) = p(x,2)
computing high-dimensional integrals: Jp(x,2)dz

p(x) = j p(x, 2)dz

Inference for discrete latent variables involves summing
over exponentially many latent configurations

og | [p(x)= ) logp() =) l0g ) pe(x.2)
XED

> E.g., for a 3-dimensional binary z iterate over [0,0,0],[0,0,1],[0,1,1],...
o For 20 dimensions 2%° ~ 1M latents and generations. Per image x!
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Let’s take a breath. Where are we?

oAutoencoders: nice idea but does not give us probabilities

oldea 1: let’s model it with latent variables: z -> x
o If we simply fix p(z) in some manner, p(x) can be computed as p(x|z)p(z)

o Nice

oSo how do we do inference (going from observations to model parameters)?
o We do this by learning p(z|x): learn which z was used for a given x

o However the “normalize across data” integral is intractable to compute
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Variational Inference

We will use the calculus of variations to approximate those intractable integrals.

This will turn the inference problem into an optimization problem
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Approximate inference

Markov Chain Monte Carlo: generate samples from the exact posterior
using a Markov Chain

> Very general; exact in the limit of infinite time / computation
- Computationally expensive; convergence is hard to diagnose

Variational inference: approximate the posterior with a tractable
distribution, e.g., fully factorized or autoregressive

o Fairly efficient, as inference is reduced to optimization w.r.t. the distribution
parameters

> Cannot trade computation for accuracy easily
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Revisit: Kullback—Leibler divergence

Kullback-Leibler divergence provides a way of quantifying the difference
between two probability distributions.

KL divergence between g and p is defined as

KL(qllp) = E, aog%)

q* = argmin, Dxx(pl|q) q" = argmin, Dx,(q||p)

KL divergence is
> non-negative KL(q||p) = 0; 5 . 5(2) 5 I'\\ . 5(2)
> KL(q|lp) =0 if only if ¢ = p; i i I' ‘\\
o Not symmetric, in general KL(q||p) #= KL(p||q) 2 - 1B !
~ } P s N - ~ /I \\
Maximum likelihood Reverse KL

VISLab
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Tool 1: Jensen’s inequality

A concave function f (like a logarithm) on a sum will always be larger
than the sum of f on individual summands
> Basically, a line connecting two points of a function will be always below the function

fltx; + (1 —t)xy) = tf (x1) + (1 — 1) f (x2)

With probabilities and random variables this translates to

f(E[x]) = E[f(x)]

Jensen Inequality
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https://en.wikipedia.org/wiki/Jensen's_inequality

Tool 2: Monte Carlo methods

The methods rely on repeated random sampling to obtain
numerical results.

We want to estimate the value of 7
o 1. Draw a square, then inscribe a quadrant within it
o 2. Uniformly scatter a given number of points over the square

o 3. Count the number of points inside the quadrant, i.e. having a
distance from the origin of less than 1

> 4. The ratio of the inside-count and the total-sample-count is an
estimate of the ratio of the two areas, /4. Multiply the result by 4 to
estimate Tt.
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https://en.wikipedia.org/wiki/Monte_Carlo_method

Tool 2: Monte Carlo methods

Consider the one dimensional integral

[ = Eeoplf 0] = | pGIf ()dx

We can approximate the integral by

Eplf(0)] = Iy = 3T, f(x)

xt ... xTare samples drawn from p.
The MC estimate is an unbiased estimator.

In the limit of a large number of points N, Iy tends to the exact value I (Law of
large numbers).
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Variational inference

Variational inference turns the task of finding the posterior distribution
into an optimization problem.

Approximate exact posterior pg(z|x) with variational posterior g4 (z|x).

¢: variational parameters which we optimize to fit variational posterior
to the exact posterior.

We usually use Kullback-Leibler divergence. (2] %)

(don’t worry about the difficult sounding things)

7 KL(g(zv") || p(z] %))
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Variational inference

We can use any distribution q4 (z) for as long as
> We can sample from it
> We can compute and its gradient w.r.t ¢

We will use the easiest form possible
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Training with variational inference

What do we use as the training objective if the marginal log-likelihood is
intractable?

max log pg(x)

The variational posterior induces a variational lower bound on the
marginal log-likelihood.

We train a model with VI by maximizing variational lower bound
> w.r.t. both the model parameters 8 and the variational parameters ¢.

lgl UNIVERSITY OF AMSTERDAM DEEP LEARNING ONE - 46 VISLab



Important: How to arrive at the variational lower bound

For any density q4(z) as long as q4(z) >0, we have

logpg(x) = log J po(x,z)dz = log f q¢(2) psq(j;) dz

Jensen’s inequality

po (x, )
q¢(2) log 10 (Z) ———— log Eq, ([ ()] 2 Eq ) llog £ (2)]

po(x,z) —
= F a4 (2) [log “ variational lower bound

qe(2)
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Variational lower bound

Therefore, for any such q4(2)

po(x,2)
Lgpx) =Eq, (2 [108 2¢(z) ] < log pg(x)

We now can maximize £ g 4(x) instead of log py (x).
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Variational lower bound

We design a variational posterior qp(z|x) as qq (Z) (remember  only came from “multiplying by 17):

Pe (X, Z)
qe(z|x)

Lo (x) = Eq¢(z|x) llog

which is called Evidence Lower Bound (ELBO), the simplest and widely
used variational lower bound.

Higher ELBO — smaller difference to true pg(z|x) — better latent
representation

Higher ELBO— gap to log-likelihood tightens — better density model
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Derive ELBO in a different way

Start with KL of g and p

KL(gqg(z]x) Il pg(z|x)) = f q¢(z|x) (log g4 (z|x) — logpg(z|x)) dz

| pe(x|2)p(2)
= q4(z|x) (log q4(z]|x) — log s )dz

= [ 4p1) Qogay (21x) ~10g po(xl2) ~ logp(2) + logp(x)) dz

= —Eq, (210 llogpe(x]2)] + KL(q4(2)||p(2)) + logp(x) = 0

log p(x) 2 Eqy ) llogpe(x12)] - KL (g4 (210)|1p(@))
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Entropy regularization

We can also expand the ELBO as

p(x,z)
Eqy(2) [108 10 = Eypllogp(x, 2)] — Egp|log g4 (2)]

= Eqyllogp(x, 2)] + H(q4(2))
where H(+) is the entropy

Maximising ELBO: increases likelihood of data and latents, and maintains enough
entropy (‘uncertainty’) in the distribution of latents

> Avoiding latents to collapse to point estimates (z as single values)
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Variational gap

Rewriting the ELBO:
po(x,z) pe(z|x)pg(x)
Logs(x)=E [10 =F [lo
ARSIl R ETE)) Bl R eTS
pe(z|x)
— E ]
Eqy(ziy[logpg ()] + Eq (212 [ 0g 4o Z0)

= logpg(x) — KL(qp(z|x)|Ipe(z]x))
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Variational gap

L gp(x) =logpg(x) — KL(qp(z|x)|Ipe(z]x))

This means maximizing £ g 4(x) w.r.t. ¢ is equivalent to minimizing

KL (qu (le) | |p9 (le)) log pg(x) does not depend on ¢

which is known as the variational gap, because it is the difference
between log pg(x) and the variational bound £ g 4 (x)
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Fitting the variational posterior

We can fit the variational posterior to the exact posterior by maximizing the
ELBO w.r.t. ¢, which minimizes the

KL(qg(z]x)|lpe(z|x))

This is remarkable because we cannot compute KL(qg(z|x)||pg(z|x)) or even
po(z|x).

L g4 (x) =logpe(x) — KL(qp(z|x)||Ipe(z]|x))

ELBO is the difference between two intractable quantities, which is tractable!!!
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Fitting the variational posterior

L gp(x) =logpe(x) — KL(qp(z|x)||pe(z]x))

If the variational distribution family is expressive enough, the ELBO is
maximized w.r.t. ¢, then the variational posterior is equal to the exact
posterior (and the variational gap is zero).

By updating the variational parameters ¢ to increase ELBO,
- makes the variational distribution closer the true posterior
o Improves the variational approximation without affecting the model
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Training the model

When we update the model parameters 6 to increase the ELBO

L gp(x) =logpg(x) — KL(qp(z|x)|Ipe(z]x))

log g (x) will increase and/or

KL(qp(z|x)||pe(z|x)) will decrease

--> We should use the most expressive variational posterior we can.
> how to choose the variational posterior?
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Where are we?

oAutoencoders: nice idea but does not give us probabilities

oldea 1: let’s model it with latent variables: z -> x
o If we simply fix p(z) in some manner, p(x) can be computed as p(x|z)p(z)

o Nice

oSo how do we do inference (going from observations to model parameters)?
o We do this by learning p(z | x): learn which z was used for a given x

o However the “normalize across data” integral is intractable to compute

oBy using another probability distribution and Jensen’s inequality, we can arrive at a
lower bound on the quantity we want to optimize

o This ELBO is given by L g 4(x) = Eg (4 |log Polxz) | _ Eq,nllogpe(x,z)] — KL(q4(z]|x)|Ip(2))
¢ q¢(2]x) ¢

o We have also quantified the gap of ELBO to p(x) to be KL(q(z|x)||p(z|x))
oNow: how to choose and optimize g?
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Choosing the form of the variational posterior

The default choice is a fully factorized distribution
qp(z|x) =[1iqp (zi]x)
In classic VI, this is known as the mean field approximation.

Several options for more expressive posteriors:
o Mixture distributions
o Gaussian with a non-diagonal covariance matrix
o Autoregressive

o Flow-based

Trade off between training speed and approximation quality
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Amortized variational inference

The posterior distribution p(z|x) is different for each observation x
o each x has its own latent distribution over z

In classic variational inference, we learn a different set of variational
parameters ¢ for each datapoint using iterative optimization.
° ¢ represents u and o for Gaussian distributions.

We adopt the amortized inference technique: much more efficient
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Amortized variational inference

Parameterized function: from observation space to parameters of the
approximate posterior

o instead of optimizing a set of free parameters

For this: a neural network: x as input, and outputs the u and o for z
o the neural network is shared by different observations!

Memoryless inference Amortized inference
a ﬁ \ 7 G
P(h,d) | Qo,(h|d1) Qo, (h|d2)
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Amortized variational inference

Then optimize the parameters of amortized neural networks instead of
the individual parameters of each observation.

> e.g., ¢ represents the network weights now!
> trained jointly with the model by maximizing the ELBO.

Amortized inference can cause an amortization gap (talked about later)
o a reason for suboptimality
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Benetfits of using amortization

First, the number of variational parameters is constant w.r.t. to the dataset size!
o it is the size of the inference network

- we only need to specity the parameters of the network

Second, for new observation, all we need to do is to pass it through the network,
> we have an approximate posterior distribution over its associated latent variables!
> At the constant cost of a forward pass through a network (no optimization)
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Variational vs. exact inference

What did we gain by using variational inference?
o Inference in an efficient and principled way.

> Freedom in model design
o Inference is fast compared to MCMC methods.

What did we lose?

> VI can make the model etfectively less expressive
o thus lead to suboptimal performance.

lgl UNIVERSITY OF AMSTERDAM DEEP LEARNING ONE - 63

VISLab



Maximizing the ELBO

Our objective is to maximize the ELBO

Po (X, Z)
q¢(z|x)

w.r.t. the model parameter 6 and variational parameter ¢.

L 0,¢ (x) = Eq¢(z) [log

It 1s non-convex optimization
We need to compute the gradients.

In modern variational inference, we estimate gradients using Monte
Carlo sampling.
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Take 3 min and discuss with your neighbor the following points
(think about what is the main idea, what ditficult thing to understand, etc.)

(Unconditional)

1) Generative models, Bayes’ rule L ) P(x)
Conditional

Generative Model Prior over labels

2) Jensen’s inequality

3) Inference, variational inference and amortization
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Gradient w.r.t. the model parameters

Gradient with regards to 6:

po(x,2)
q¢ (Z]x)

VoL g,¢(x) =VoEq, (z1x) [108
= Eqy(z10)[Vape (x, 2)]

1 oK k
== k=1V X, .

We simply generate one or more samples from the variational posterior
and average the resulting gradients of the log-joint
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Gradient w.r.t. variational parameters

Estimating the gradient w.r.t. ¢ is nontrivial
> using samples from the variational posterior which depends on ¢

PoZ) | _ 999
d¢ (z|x)

VoL 0.6(%) =VpEqyz1x) [108
- which involves in gradients of an expectation

VoEqy @z lf (2)]

o One last trick to make this all work
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Gradients of expectations

REINFORCE / likelihood-ratio estimator

> Very general
o Applicable to both discrete and continuous latent variables
o Can handle non-differentiable function f(z)

Reparameterization
> Less general
> Applicable only to continuous latent variables
> Requires f(z) to be differentiable
o Tends to have relatively low variance
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Reparameterization trick

We reparametrize a sample from q4(z|x) by expressing it as a function of
a sample € from some fixed distribution p(e€) :

z=g(€ )
g (€, @) needs to be differentiable w.r.t. ¢
V¢Eq¢(z) 1f(2)] = quEp(e) [f (g(e, )]

= Epee :quf(g (€, ¢))] p(€) does not depend on ¢
= Ep(e) sz(Z)V¢g(E, d))] Chain rule
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Reparameterization trick

The reparameterization trick essentially moves the dependence on the
distribution parameters inside the expectation.

o This can be seen as propagating gradients through z

o To get the correct gradients, the function g(e, ) mapping € to z has to be
differentiable w.r.t. the distribution parameters ¢.

Reparameterizing a Gaussian variable: z ~ N(u, o)
z=u+eOo, withe~N(0,I)

Note that this mapping from € to z is differentiable w.r.t. both
parameters of the distribution, as required.
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Reparameterization trick visualised

no problem for backpropagation ~ s==aa. backpropagation is not possible due to sampling
mean vector
[ ] sampled
latent vector
1/ - >
...... | . Encoder Decoder
H ‘\ — Network ] Network =
. ~N A~
N > —_— (conv) (deconv)
----- o L
standard deviation
o vector
X
Z=[+00E
sampling without reparametrisation trick sampling with reparametrisation trick

where € ~ Normal(0,1)
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Where are we?

(@]

(@]

(@]

oWe can choose any simple g, but optimization requires difficult gradient of an expectation involving
the variational parameters that we wish to take gradients from

o Broader context: sampling is a non-differentiable computation. But we can approximate it with one sample that carries the
same mean and variation

o Key idea: reparametrize z: have generic, stochastic € and learn the scales and shifts (for which gradients can flow)
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Variational autoencoders

A generative model with continuous latent variables:

The likelihood and the variational posterior are neural networks.

Both the prior and the variational posterior are usually fully factorized Gaussians.
VAE:s are trained using amortized variational inference.

Take the advantage of the reparameterization trick.
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Variational autoencoders

Rewrite the ELLBO as follows:

£ 0¢(x) = Eq, () [log pg (x12)] — Ki{ggzlellpelz))

The first term measures how well the model predicts / reconstructs an
observation from a sample from the variational posterior.

- Known as the negative reconstruction error.

The Faets as a regularizer, pushing the variational posterior

towards the prior.
o [t measures the amount of information about the observation in the latents.

> Often computed analytically.
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£ 5,6 (x) = Eq, »)[logpa (x|2)] — Kii(gyzlx)lipslz))

Quiz: what problems might happen with the reconstructions?

1) They might be risk averse and not have sharp edges
2) Sampling at every location will yield a noisy image
3) Very high or low colors (close to 0 or 255) will be rare
4) Neighboring pixels will not have any dependencies
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Variational autoencoders

L g,p(x) = Eq(zllogpe(x]|2)] = KL(qe(z|x)||pg(2))

q4(z|x) is implemented as the encoder network, also known as the
recognition network

pg(x|z) is implemented as the decoder network

Both encoder and decoder networks are amortized networks

lgl UNIVERSITY OF AMSTERDAM DEEP LEARNING ONE - 76 VISLab



Intuition of the KL regularizer:

Make generative process have two main properties:

Continuity: two close points in the latent space should not give two
completely different contents once decoded (thanks noise!)

Completeness: for a chosen distribution, a point sampled from the latent
space should give “meaningful” content once decoded.

O [\ P o b gy o O
Pace megiing
once deccc'ed aess
’ ./ ’ A
oinds inHe
once decoded

in the Qatent Space are

similar once decoded

irregular latent space x V regular latent space
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Inference suboptimality

The quality of approximate inference is determined by two factors

o Variational posterior: The capacity of the variational distribution to match the true
posterior

- Amortized inference: The ability of the amortized network to produce good variational
parameters for each datapoint.

Observation:
o divergence from the true posterior is often due to imperfect amortized inference network
o rather than the limited complexity of the approximating distribution.
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Inference Gaps

Approximation Gap
o Inability of the variational distribution to approximate
the true posterior KL(qe(z|x)|Ipe(z]|x))

> An expressive variational distribution — small |
approximation gap 0gp(x) 4
Approximation
L Ga
Amortization Gap o ! P
o Limited capacity of the amortization/recognition [a7] A
network to generalize inference over all datapoints
o Stronger networks — small amortization gap Amorglz ation
ap
Llg] ——~

VISLab

lgl UNIVERSITY OF AMSTERDAM DEEP LEARNING ONE - 81



Encoder

2
Sample z from z|a7 ~ N(uz|m, Ez|:1c)

/V

Hz|z Zz|a:
W) SN
h
Encoder network
Input Data
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Decoder

a9
Sample x|z from £I3|Z ~ N(/-l':z:|z) Eaclz)

i

Hz|z Za:|z
po(x|z) \/

Decoder network
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ing Data

Generat

Use decoder, and sample from the prior
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Dimensionality of latent space
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(b) 5-D latent space (c) 10-D latent space (d) 20-D latent space

(a) 2-D latent space
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Face generation

Why blurry? (Actually noisy)
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VAE variants
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Conditional VAEs

Model the distribution of output space as a generative model conditioned
on the input observation

> The input observations modulate the prior on Gaussian latent variables that generate

the outputs.
Vs Z Z
pe/(Z|X) \ %‘P(le’h
X

Py(YIX.2)
Y X Y

generation recognition
Used for structured output predictions, e.g., object segmentation
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Conditional VAEs

The ELBO for conditional VAE

L g (xX) = Eq,(z1y)llogpe(y|x, 2)] — KL(qe(zly, x)||pe(z]X))

It is trained to maximize the conditional log-
likelihood

The conditional variational autoencoder has an
extra input to both the encoder and the decoder.
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Conditional VAEs

Generated samples with (left) 1 quadrant and (right) 2 quadrants for an input
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Beta-VAE

“More” Disentangled representations

- Each variable in the inferred latent representation z is only sensitive to one single
generative factor

o relatively invariant to other factors

Good interpretability and easy generalization to a variety of tasks.

o e.g., model trained on photos of human faces might capture hair colour, hair length,
etc.

The loss function of beta-VAE

L g,p(x) = Eq,(zllogpe(x]|2)] — BKL(qe(z|x)||pe(2))
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Beta-VAE

More steerable/interpretable =Fs

(a) Azimuth (rotatio

(b) emotion (smile)
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VQ-VAE and VQ-VAE2

Codebook
e,ee, €
Embedding |
Space 1
L] L ' @ ®
| @
I zq(x). v,L
) . . = @
\ 7 = ' o
. ' ®
J q(z|x) 1 .
CNN #.\ T v1‘/ : . .
[ 13 1] 1 -
z,(x) Z L 2] | z,(x) ~q(z|x)
53
- ~ J - @ ~ J
Image Generation
Encoder Posterior categorical distribution: Decoder
1 if k = argmin; ||z.(x) — e;
q(z _ eklx) _ i g 1 ” e( ) ’L”2
0 otherwise.

Generation

Neural Discrete Representation Learning. Van den Oord et al. NeurIPS 2017
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