


Announcement

Original schedule

o Tue, Oct 9: Lecture 11
o Fri, Oct 12: Lecture 12
o Thu, Oct 18: Lecture 13

o Fri, Oct 19: No lecture, instead poster presentations in the afternoon

New schedule

o Tue, Oct 9: No lecture
o Fri, Oct 12: Lecture 11
o Thu, Oct 18: Lecture 12

o Fri, Oct 19: Lecture 13 in the morning, poster presentations in the afternoon
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Lecture overview

o Why Bayesian Deep Learning?
o Types of uncertainty

o Bayesian Neural Networks

o Backprop by Bayes

o MC Dropout
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Bayesian modelling
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The Bayesian approach

o Conventional Machine Learning =2 single optimal value per weight

o Bayesian Machine Learning = a distribution per latent variable/weight

-w , (Bayesian)
-b , (Bayesian)

— W, (conventional)

— Ic':1 (conventional)
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Benefits of being Bayesian
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Benefits of being Bayesian

o Ensemble modelling = better accuracies

o Uncertainty estimates = control our predictions
o Sparsity and model compression

o Active Learning

o Distributed Learning

o And more ...
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Why uncertainty?

o Machine predictions can get embarrassing quite quickly
o Would be nice to have a mechanism to control uncertainty in the world

g TayTweets © 8¢ | @ TayTweets ¢ | O
syand i ) Tayand Yot )

@mayank_jee cani just say that im @UnkindledGurg @PooWithEyes chill
stoked to meet u? humans are super im a nice person! i just hate everybody
cool e s

@ TayTweets & | 8 a TayTweets & S
@TayandYou — Tayar

@NYCitizen07 | fucking hate feminists @brightonus33 Hitler was right | hate
and they should all die and burn in hell the jews.

( 2016, 11:41

| gerry L

- @geraldmellor

"Tay" went from "humans are super cool" to full nazi in <24 hrs
and I'm not at all concerned about the future of Al
7:56 AM - Mar 24, 2016

Q 10.8K O 12.5K people are talking about this
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Types of Uncertainty

o Epistemic uncertainty

o Captures our ignorance regarding which of all possible models from a class of models
generated the data we have

°By increasing the amount of data, epistemic uncertainty can be explained away
°c\Why?
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Types of Uncertainty

o Epistemic uncertainty

o Captures our ignorance regarding which of all possible models from a class of models
generated the data we have

°By increasing the amount of data, epistemic uncertainty can be explained away

°Why? The more data we have the fewer are the possible models that could in fact
generate all the data

o Aleatoric uncertainty
cUncertainty due to the nature of the data.

°|f we predict depth from images, for instance, highly specular surfaces make it very
hard to predict depth. Or if we detect objects, severe occlusions make it very difficult
to predict the object class and the precise bounding box

o Better features reduce aleatoric uncertainty

o Predictive Uncertainty = Epistemic uncertainty + Aleatoric uncertainty
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Types of Uncertainty

e 8 )

(a) Input Image (b) Ground Truth (c) Semantic Segmentation (d) Aleatoric Uncertainty (e) Epistemic Uncertainty
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Epistemic uncertainty

o Important to consider modelling when
owe have safety-critical applications
°the datasets are small

Should | give the operate or give a drug?

average loss: 0.5259637128937137
[ ] °
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Aleatoric uncertainty

o Important to consider modelling when
°Large datasets = small epistemic uncertainty
cReal-time = aleatoric models can be deterministic (no Monte Carlo sampling needed)

Logistic Regression =z

Q. L —

s

gl
9 o Mean values for
a e gtrict negative prefarance
O < —— slrict positive preference
D - — aleatoric uncertainty
=9 -~ spistemic uncertanty

N

o

o '_‘.3'-5‘—’.1""‘ e : B

[ 3 | 1 T T T 1

20 60 100 140 180 220

size of training set (experience)
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Data-dependent aleatoric uncertainty

o Also called heteroscedastic aleatoric uncertainty
o The uncertainty is in the raw inputs

o Data-dependent aleatoric uncertainty can be one of the model outputs
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Task-dependent aleatoric uncertainty

o Also called homoscedastic aleatoric uncertainty

o It is not a model output, it relates to the uncertainty that a particular task
might cause

°For instance, for the task of depth estimation predicting depth around the edges is
very hard = thus uncertain

o When having multiple tasks task-dependent aleatoric uncertainty may be
reduced
°For instance?
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Task-dependent aleatoric uncertainty

Depth Prediction Edge prediction as second task?
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Bayesian Modelling
Variational Inference

Figure 1. Left: each weight has a fixed value, as provided by clas-
sical backpropagation. Right: each weight is assigned a distribu-
tion, as provided by Bayes by Backprop.




Bayesian Deep Learning

o Deep learning provides powerful
feature learners from raw data
°But they cannot model uncertainty

o Bayesian learning provides
meaningful uncertainty estimates

°But they often rely on methods that are
not scalable, e.g. Gaussian Processes

o Bayesian Deep Learning combines
the best of two worlds
°Hierarchical representation power

> Qutputs complex multi-modal
distributions

Figure 1. Left: each weight has a fixed value, as provided by clas-
sical backpropagation. Right: each weight is assigned a distribu-
tion, as provided by Bayes by Backprop.
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Bayesian Deep Learning: Goal?

o Deep Networks: filters & architecture
o Standard Deep Networks =2 single optimal value per filter

o A Bayesian approach associates a distribution per latent variable/filter

Figure 1. Left: each weight has a fixed value, as provided by clas-
sical backpropagation. Right: each weight is assigned a distribu-
tion, as provided by Bayes by Backprop.
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Modelling data-dependent aleatoric uncertainty

o We add a variance term per data point to our loss function

- ly; — ;1%

207

L + log o;

o What is the role of 2¢/7?

°When the nominator becomes large, the network may choose to shrink the loss by
increasing the output variance o;

o But then what about log g;?
> Without it the network will always tend to return high variance

A. Kendal, Y. Gal, What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision, NIPS 2017
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Modelling task-dependent aleatoric uncertainty

o Similar to the data-dependent uncertainty

_ly; = 7ill?

L
202

+ logo

o The only difference is that now the variance is a learnable parameter
shared by all task data points

o One can use task-dependent uncertainties to weigh multiple tasks
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Results

Figure 5: NYUv2 Depth results. From left: input image, ground truth, depth regression, aleatoric uncertainty,
and epistemic uncertainty.

Figure 6: Qualitative results on the Make3D depth regression dataset. Left to right: input image, ground
truth, depth prediction, aleatoric uncertainty, epistemic uncertainty. Make3D does not provide labels for depth
greater than 70m, therefore these distances dominate the epistemic uncertainty signal. Aleatoric uncertainty is
prevalent around depth edges or distant points.
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Modelling epistemic uncertainty

o Epistemic uncertainty is harder to model

p(x, ylw)p(w)
[, pCx,yIw)p(w) dw

p(wlx,y) =

o Computing the posterior densities is usually intractable for complex
functions like neural networks
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Epistemic uncertainty: Monte Carlo (MC) Dropout!

o Variational Inference assumes a (approximate) posterior distribution to
approximate the true posterior

o Dropout turns on or off neuros based on probability distribution (Bernoulli)

o The Bernoulli distribution can be used as the variational distribution =2
MC Dropout

Y. Gal, Z. Ghahramani, Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning, MLR 2016
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Bayesian Neural Networks as (approximate) Gaussian Processes

o Expected model output described by
°Predictive mean E(y™)
o Predictive variance Var(y™)

o Starting from a Gaussian Process and deriving a variational approximation,
one arrives at a Dropout Neural Network
1%p

o The model precision is equivalentto T = VA

o[ is the length-scale: large for high-frequency data, small for low-frequency data
°p the dropout survival rate
°Ais the learning rate
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Predictive mean and variance in MC Dropout Deep Nets

2k &g
o M o : |
. lzp | . r‘.l ® |
"ToNa I Yl
1 " . LAY ‘.
E(y ) == ) ¥ (x7) | TN

T o\
t=1

T
1 * * A~ K * * *
Vary) & Ty + 5 ) 9@ () — BG)TEGY)
t=1

Demo
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https://github.com/yaringal/DropoutUncertaintyDemos

Dropout for Bayesian Uncertainty in practice

o Use dropout in all layers both during training and testing

o At test time repeat dropout 10 times and look at mean and sample variance
o Pros: Very easy to train
o Pros: Easy to convert a standard network to a Bayesian Network

o Pros: No need for an inference network g, (¢)

o Cons: Requires weight sampling also during testing =2 expensive
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Example

Prediction in a 5-layer RelLU
neural network with dropout

Using 100-trial MC dropout

Using 100-trial MC dropout
with tanh nonlinearity
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Tricks of the trade

o Over-parameterized models give better uncertainty estimates, as they
capture a bigger class of data

o Large models need higher dropout rates for meaningful uncertainty
°large models tend to pushp — 0.5
°For smaller models lower dropout rates reduce uncertainty estimates
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MC Dropout rates

(@) p=0 (b) p= 0.1 (c) p=025

(d)p=0.5 (e) p=0.75
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Bayes by Backprop

o Start from a Deep Network with a distribution on its weights

o Similar to VAE, we only need to minimize the negative ELBO
£ = KLGWIO)llpow) — [ awl6) logp(xlw) dw
w

o An approximation is to sample a single weight value wg from our posterior
qg(w|0), e.g., a Gaussian, the compute the MC ELBO

L =log q(wg||0) — logp(ws) — logp(x|ws)

C. Blundell, J. Cornebise, K. Kavukcuoglu, D. Wierstra, Weight Uncertainty in Neural Networks, ICML 2015
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Bayes by Backprop

o Assume a Gaussian variational posterior on the weights

o Each weight is then parameterized as
W=UTECOT

where o is p-parameterized by the softplus

o = log(1 + exp(p))
o Why?
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Bayes by Backprop

o Assume a Gaussian variational posterior on the weights

o Each weight is then parameterized as
W=UT+Eo°O

where g is p-parameterized by the softplus

o = log(1 + exp(p))
o Why? With this parameterization the standard deviation is always positive

o Then we optimize the ELBO

o In the end we learn an ensemble of networks, since we can sample as many
weights as we want
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Bayes by Backprop - Algorithm

1. Sample e~N(0,1)
2. Setw=pu+¢eolog(l+ exp(p))
3. Setf ={u,p}
4. Let L(w,0) =logq(w]||@) —logp(w)p(x|w)
5. Calculate gradients
g 2 OLow oL
B

Vo = ow1l+exp(—p) Jp

/. Last, update the variational parameters
Uey1 = U — NtV
Pt+1 = Pt —NiV)
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Bayes by Backprop: Results
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Figure 2. Test error on MNIST as training progresses.
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Figure 3. Histogram of the trained weights of the neural network,
for Dropout, plain SGD, and samples from Bayes by Backprop.
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Figure 5. Regression of noisy data with interquatile ranges. Black
crosses are training samples. Red lines are median predictions.
Blue/purple region is interquartile range. Left: Bayes by Back-
prop neural network, Right: standard neural network.
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Bayesian Neural Network Compression

o Revisit connection between minimum description length and variational
inference

o Minimum Description Length: best model uses the minimum number of
bits to communicate the model complexity L and the model error £LE

L(p) = Ey, (pllogp(D|w)] + E, pllogp(w)] + H(qy (¢))
. o~ PN b )
o Use sparsity-inducing priors for groups of weights = prune weights that
are not necessary for the model

C. Louizos, K. Ullrich, M. Welling, Bayesian Compression for Deep Learning, NIPS 2017
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Bayesian Neural Network Compression

Spike-and-slab

_ _ _ distribution
o Define the prior over weights

z~p(z)
w~N(w; 0,z%)

o The scales of the weight prior have a prior themselves

o5 F T T T T [ T T T 1

o Goal: by treating the scales as random variables the .. =0 b2 —
marginal p(w) can be set to have heavy tails = more .. |
density near O O

01

0

-0 -8 6 4 -2 0 2 4 6 & 10

o Several distributions possible to serve as priors Laplace distribution
(Lasso)
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Sparse-inducing distributions

Spike-and-slab distribution
Mixture of a very spiky and a very

Cauchy half-Cauchy

broad Gaussian o] “
57 el Half-Cauchy
Or a mixture of a &-spike at 0, and a °] -
slab on the real line T S
This would lead to large number of
possible models: 2 for M parameters
. iform(2,
Laplace distribution (Lasso) o rogUniform(225)
2. — 04 0.6
p(Z ’A) - exp(ﬂ') 05 1 .
o Log-Uniform

03 -

0.2 4

Lasso focuses on shrinking
the larger values

01

-0 -8 -6 4 -2 0 2 4 6 8 10
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Bayesian Neural Network Compression

First layer Second layer
. 0.12
o /00x compression 012
0.09
0.09
0.06 0.06
o0 50x speed up
0.03 0.03
0.00 0.00
Input feature importance
-0.03 -0.03
M ki El Ei
e
é, -0.09 -0.09
‘ -0.12
-0.12
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Some open questions

o Hard to model epistemic uncertainty real-time
> Typically, Monte Carlo approximations are required
o Efficiency and uncertainty is needed for robotics, self-driving, health Al, etc

o No benchmarks to fairly evaluate

average loss: 0.5259637128937137

o Inference techniques are still not good enough
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o Why Bayesian Deep Learning?
o Types of uncertainty
Summary o Bayesian Neural Networks

o Backprop by Bayes

o MC Dropout

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES
BAEYSIAN DEEP LEARNING -41




