
UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 1

Lecture 3: Deep Learning Optimizations
Deep Learning @ UvA

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 2

o How to define our model and optimize it in practice

o Data preprocessing and normalization

o Optimization methods

o Regularizations

o Architectures and architectural hyper-parameters

o Learning rate

o Weight initializations

o Good practices

Lecture overview

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES

DEEP LEARNING OPTIMIZATIONS - 3

Stochastic Gradient
Descent

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 4

A Neural/Deep Network in a nutshell

𝑎𝐿 𝑥; 𝑤1,…,L = ℎ𝐿 (ℎ𝐿−1 …ℎ1 𝑥,w1 , w𝐿−1 , w𝐿)

w∗ ← argmin𝑤 ෍

(𝑥,𝑦)⊆(𝑋,𝑌)

ℒ(𝑦, 𝑎𝐿 𝑥; 𝑤1,…,L)

𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑡𝛻𝑤ℒ

1. The Neural Network

2. Learning by minimizing empirical error

3. Optimizing with Stochastic Gradient Descent based methods

Prepare to vote

Voting is anonymous

Internet 1

2

Go to shakespeak.me

Log in with uva507

TXT 1

2

Text to 06 4250 0030

Type uva507 <space> your choice (e.g. uva507 b)

The text on this slide will instruct your audience on how to vote. This text will only appear once you

start a free or a credit session.

Please note that the text and appearance of this slide (font, size, color, etc.) cannot be changed.

What is a difference between Optimization and Machine Learning?
(multiple answers possible)

A. The optimal learning solution is not the optimal machine learning solution
necessarily

B. They are practically equivalent
C. Machine learning is similar to optimization with some extras
D. In learning we usually do not optimize the intended task but an easier surrogate one
E. Optimization is offline while Machine Learning can be online

Votes: 121 Time: 60s

The question will open when you

start your session and slideshow.

Internet This text box will be used to describe the different message sending methods.

TXT The applicable explanations will be inserted after you have started a session.

What is a difference between Optimization and Machine Learning?
(multiple answers possible)

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 8

o Pure optimization has a very direct goal: finding the optimum
◦ Step 1: Formulate your problem mathematically as best as possible

◦ Step 2: Find the optimum solution as best as possible

◦ E.g., optimizing the railroad network in the Netherlands

◦ Goal: find optimal combination of train schedules, train availability, etc

o In Machine Learning training, instead, the real goal and the trainable goal
are quite often different (but related)
◦ Even “optimal” parameters are not necessarily optimal  Overfitting …

◦ E.g., You want to recognize cars from bikes (0-1 problem) in unknown images, but you
optimize the classification log probabilities (continuous) in known images

Pure Optimization vs Machine Learning Training?

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 9

o Differently from pure optimization which operates on the training data
points, we ideally should optimize for

min
θ

Ε𝑥,y~ ො𝑝data
ℒ w; x, y

o Still, borrowing from optimization is the best way we can get satisfactory
solutions to our problems by minimizing the empirical risk

min
𝑤

Ε𝑥,y~ ො𝑝data
ℒ w; x, y + 𝜆Ω(w) = 1

𝑚
σ𝑖=1
𝑚 ℒ ℎ 𝑥𝑖;𝑤 ,𝑦𝑖 +𝜆Ω(w)

o That is, minimize the risk on the available training data sampled by the
empirical data distribution (mini-batches)

o While making sure your parameters do not overfit the data

Empirical Risk Minimization

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES

DEEP LEARNING OPTIMIZATIONS - 10

Stochastic Gradient
Descent (SGD)

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 11

o To optimize a given loss function, most machine learning methods rely on
Gradient Descent and variants

𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑡𝑔𝑡
◦ Gradient 𝑔𝑡 = 𝛻𝑡ℒ

o Gradient on full training set  Batch Gradient Descent

𝑔𝑡 =
1

𝑚
෍

𝑖=1

𝑚

𝛻𝑤ℒ (𝑤; 𝑥𝑖 , 𝑦𝑖)

◦ Computed empirically from all available training samples (𝑥𝑖 , 𝑦𝑖)

◦ Sample gradient really  Only an approximation to the true gradient 𝑔𝑡
∗ if we knew the

real data distribution

Gradient Descent

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 12

o Conditions of convergence well understood

o Acceleration techniques can be applied
◦ Second order (Hessian based) optimizations are possible

◦ Measuring not only gradients, but also curvatures of the loss surface

o Simpler theoretical analysis on weight dynamics and convergence rates

Advantages of Batch Gradient Descent batch learning

What could be disadvantages of Batch Gradient Descent? (multiple answers
possible)

A. Data is often too large to compute the full gradient, so slow trainng
B. The loss surface is highly non-convex, so cannot compute the real gradient
C. No real guarantee that leads to a good optimum
D. No real guarantee that it will converge faster

Votes: 167 Time: 60s

The question will open when you

start your session and slideshow.

Internet This text box will be used to describe the different message sending methods.

TXT The applicable explanations will be inserted after you have started a session.

What could be disadvantages of Batch Gradient Descent? (multiple answers
possible)

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 15

o Often loss surfaces are
◦ non-quadratic

◦ highly non-convex

◦ very high-dimensional

o Datasets are typically really large
to compute complete gradients

o No real guarantee that
◦ the final solution will be good

◦ we converge fast to final solution

◦ or that there will be convergence

Still, optimizing with Gradient Descent is not perfect

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 16

o The gradient equals an expectation E(𝛻𝜃ℒ). In practice, we compute the mean from
samples E 𝛻𝜃ℒ = Τ1 𝑚σ𝛻𝜃ℒ𝑖.

o The standard error of this first approximation is given by ൗ𝜎 √𝑚
◦ So, the error drops sublinearly with 𝑚. To compute 2x more accurate gradients, we need 4x data points

◦ And what’s the point anyways, since our loss function is only a surrogate?

o Introduce a second approximation in computing the gradients
◦ Stochastically sample “mini-training” sets (“mini-batches”) from dataset 𝐷

𝐵𝑗 = 𝑠𝑎𝑚𝑝𝑙𝑒(𝐷)

𝑤𝑡+1 = 𝑤𝑡 −
𝜂𝑡
|𝐵𝑗|

෍
𝑖 ∈ 𝐵𝑗

𝛻𝑤ℒ𝑖

o When computed from continuous streams of data (training data only seen once) SGD
minimizes generalization error

◦ Intuitively, sampling continuously  we sample from the true data distribution: 𝑝data not Ƹ𝑝data

Stochastic Gradient Descent (SGD)

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 17

o Randomness helps avoid overfitting solutions

o Random sampling allows to be much faster than Gradient Descent

o In practice accuracy is often better

o Mini-batch sampling is suitable for datasets that change over time

o Variance of gradients increases when batch size decreases

Some advantages of SGD

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 18

SGD is often better

Current solution

Full GD gradient

New GD solution

Noisy SGD gradient

Best GD solution

Best SGD solution

• No guarantee that this is what
is going to always happen.

• But the noisy SGC gradients can
help some times escaping local
optima

Loss surface

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 19

SGD is often better – In more details

o (A bit) Noisy gradients act as regularization

o Gradient Descent  Complete gradients

o Complete gradients fit optimally the (arbitrary) data we have, not
necessarily the distribution that generates them
◦ All training samples are the “absolute representative” of the input distribution

◦ Test data will be no different than training data

◦ Suitable for traditional optimization problems: “find optimal route”

◦ But for ML we cannot make this assumption  test data are always different

o Stochastic gradients  sampled training data sample roughly
representative gradients
◦ Model does not overfit to the particular training samples

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 20

SGD is faster

Gradient

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 21

SGD is faster

Gradient

10x

What is our
gradient now?

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 22

o Of course in real situations data do not replicate

o But, with big data there are clusters of similar data

o Hence, the gradient is approximately alright

o Approximately alright is great in many cases actually

SGD is faster

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 23

o Often data distribution changes over time, e.g. Instagram
◦ Should “cool 2010 pictures” have as much influence as 2018?

o GD is biased towards the many more “past” samples

o A properly implemented SGD track changes better
[LeCun2002]

SGD for dynamically changed datasets

Popular today
Kiki challenge

Popular in 2014 Popular in 2010

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 24

o Applicable only with SGD

o Choose samples with maximum information content

o Mini-batches should contain examples from different classes

o Prefer samples likely to generate larger errors
◦ Otherwise gradients will be small  slower learning

◦ Check the errors from previous rounds and prefer “hard examples”

◦ Don’t overdo it though :P, beware of outliers

o In practice, split your dataset into mini-batches
◦ Each mini-batch is as class-divergent and rich as possible

◦ New epoch  to be safe new batches & new, randomly shuffled examples

Shuffling examples
Dataset

Shuffling at
epoch t

Shuffling at
epoch t+1

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 25

o SGD is preferred to Gradient Descent

o Training is orders faster
◦ In real datasets Gradient Descent is not even realistic

o Solutions generalize better
◦ More efficient  larger datasets

◦ Larger datasets  better generalization

o How many samples per mini-batch?
◦ Hyper-parameter, trial & error

◦ Usually between 32-256 samples

◦ A good rule of thumb  as many as your GPU fits

In practice

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 26

o Ill conditioning
◦ Let’s check the 2nd order Taylor dynamics of optimizing the cost function

ℒ 𝜃 = ℒ(𝜃′) + 𝜃 − 𝜃′ Τ𝑔 +
1

2
𝜃 − 𝜃′ ΤΗ(θ − θ′) (Η:Hessian)

ℒ 𝜃′ − 𝜀𝑔 ≈ ℒ 𝜃 − 𝜀𝑔Τ𝑔 +
1

2
𝑔𝑇𝐻𝑔

◦ Even if the gradient 𝑔 is strong, if
1

2
𝑔𝑇𝐻𝑔 > 𝜀𝑔Τ𝑔 the cost will increase

o Local minima
◦ Non-convex optimization produces lots of equivalent, local minima

o Plateaus

o Cliffs and exploding gradients

o Long-term dependencies

Challenges in optimization

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES

DEEP LEARNING OPTIMIZATIONS - 27

Advanced
Optimizations

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 28

Pathological curvatures

Picture credit: Team Paperspace

https://medium.com/paperspace/intro-to-optimization-in-deep-learning-momentum-rmsprop-and-adam-8335f15fdee2

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 29

o Normally all weights updated with same “aggressiveness”
◦ Often some parameters could enjoy more “teaching”

◦ While others are already about there

o Adapt learning per parameter
𝑤𝑡+1 = 𝑤𝑡 − 𝐻ℒ

−1𝜂𝑡𝑔𝑡

o 𝐻ℒ is the Hessian matrix of ℒ: second-order derivatives

𝐻ℒ
𝑖𝑗
=

𝜕ℒ

𝜕𝑤𝑖𝜕𝑤𝑗

Second order optimization

Is it easy to use the Hessian in a Deep Network?

A. Yes, you just use the auto-grad
B. Yes, you just compute the square of your derivatives
C. No, the matrix would be too huge

Votes: 85 Time: 60s

The question will open when you

start your session and slideshow.

Internet This text box will be used to describe the different message sending methods.

TXT The applicable explanations will be inserted after you have started a session.

Is it easy to use the Hessian in a Deep Network?

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 32

o Inverse of Hessian usually very expensive
◦ Too many parameters

o Approximating the Hessian, e.g. with the L-BFGS algorithm
◦ Keeps memory of gradients to approximate the inverse Hessian

o L-BFGS works alright with Gradient Descent. What about SGD?

o In practice SGD with some good momentum works just fine quite often

Second order optimization methods in practice

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 33

o Don’t switch gradients all the time

o Maintain “momentum” from
previous parameters  dampens
oscillations

𝑢𝑡+1 = 𝛾𝑢𝑡 − 𝜂𝑡𝑔𝑡
𝑤𝑡+1 = 𝑤𝑡 + 𝑢𝑡+1

o Exponential averaging
◦ With 𝛾 = 0.9 and 𝑢0 = 0

◦ 𝑢1 ∝ −𝑔1
◦ 𝑢2 ∝ −0.9𝑔1 − 𝑔2
◦ 𝑢3 ∝ −0.81𝑔1 − 0.9𝑔2 − 𝑔3

Momentum

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 34

o The exponential averaging cancels
out the oscillating gradients

o More robust gradients and learning
 faster convergence

o Initialize 𝛾 = 𝛾0 = 0.5 and anneal
to 𝛾∞ = 0.9

Momentum

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 35

o Schedule
◦ 𝑟𝑡 = 𝛼𝑟𝑡−1 + 1 − 𝛼 ⨀𝑔𝑡

2 ⟹

◦ 𝑢𝑡 = −
𝜂

𝑟𝑡+𝜀
⨀𝑔𝑡

◦ 𝑤𝑡+1 = 𝑤𝑡 + 𝜂𝑡𝑢𝑡

o Squaring and adding  no cancelling out

o Large gradients, e.g. too “noisy” loss surface
◦ Updates are tamed

o Small gradients, e.g. stuck in flat loss surface ravine
◦ Updates become more aggressive

o Sort of performs simulated annealing

RMSprop

Square rooting boosts small values while suppresses large values

Decay hyper-parameter (Usually 0.9)

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 36

o One of the most popular learning algorithms
𝑚𝑡 = 𝛽1𝑚𝑡−1 + 1 − 𝛽1 𝑔𝑡
𝑣𝑡 = 𝛽2𝑣𝑡−1 + 1 − 𝛽2 𝑔𝑡

2

ෝ𝑚𝑡 =
𝑚𝑡

1 − 𝛽1
𝑡 , ො𝑣𝑡 =

𝑣𝑡

1 − 𝛽2
𝑡

𝑢𝑡 = −𝜂𝑡
ෝ𝑚𝑡

ො𝑣𝑡 + 𝜀
𝑤𝑡+1 = 𝑤𝑡 + 𝑢𝑡

◦ Recommended values: 𝛽1 = 0.9, 𝛽2 = 0.999, 𝜀 = 10−8

o Similar to RMSprop, but with momentum & correction bias

Adam [Kingma2014]

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 37

o Schedule
◦ 𝑟𝑗 = σ𝜏(𝛻𝜃ℒ𝑗)

2 ⟹ 𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑡
𝑔𝑡

𝑟+𝜀

◦ 𝜀 is a small number to avoid division with 0

◦ Gradients become gradually smaller and smaller

Adagrad [Duchi2011]

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 38

o Use the future gradient instead of
the current gradient

o Better theoretical convergence

o Generally works better with
Convolutional Neural Networks

Nesterov Momentum [Sutskever2013]

Gradient

Gradient + momentum

Momentum

Look-ahead gradient
from the next step

Momentum

Gradient + Nesterov
momentum

𝑤𝑡+1 = 𝑤𝑡 + 𝑢𝑡+1

𝑤𝑡 = 𝛾𝑢𝜏 − 𝜂𝑡𝛻𝑤𝑡+0.5
ℒ

𝑤𝑡+0.5 = 𝑤𝑡 + 𝛾𝑢𝜏

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 39

Visual overview

Picture credit: Jaewan Yun

https://github.com/Jaewan-Yun/optimizer-visualization

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 40

o Maybe with a loss with so many local minima
we better go with a gradient-free optimization?

o Bayesian Optimization tries to find a good
solution with educated trial and error guesses
◦ Usually it doesn’t work on very high dimensional

spaces, e.g. more than 20 or 50

o Bayesian Optimization with Cylindrical Kernels (BOCK)
◦ C. Oh, E. Gavves, M. Welling, ICML 2018

◦ Scales gracefully to 500-1000 dimensions

◦ Long way from the millions/billions of parameters in Deep Nets, but there are
encouraging signs

Is Gradient-based Learning the only way?

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 41

Bayesian Optimization

Set search space

Set initial training data

Still have
evaluation budget?

Fit the surrogate model

Suggest the next
evaluation

(maximizing the acquisition function)

Evaluate the function
(Running ML algorithm)

Expand training data

YES

NO
Report
optima

predictive mean
predictive variance

new input data
(new x1, x2, ...)

new output data
(f(x1, x2, ...))

training data
{([x1, x2, ...], f(x1, x2, ...)}

training data ⋃ { (new input, new output) }

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 42

o Good, regularized solutions are often near the center of the search space

o But in high-dimensional spaces the density is towards the boundaries

o Solution: Transform the geometry of the search space!

BOCK for training a neural network layer

*

*
T(x1) T(x2)

T(x*1)

T(x*2)

*
*x1

x2

x*2

x*1

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 43

BOCK for hyper/optimizing neural networks

-784  Nhidden=50 10 : 500 dim-

Te
st

 L
o

ss

N eval
C

o
n

v

C
o

n
v

C
o

n
v

Id

C
o

n
v

C
o

n
v

Id

C
o

n
v

C
o

n
v

Id

C
o

n
v

•••

ZN=1Z2=0Z1=1

Test Acc. Valid Acc. Exp. Depth

ResNet-110 72.98±0.43 73.03±0.36 110.00

SDResNet-110

Linear
74.90±0.15 75.06±0.04 82.50

SDResNet-110

BOCK
75.06±0.19 75.21±0.05 74.51±1.22

Hyper-optimizing ResNet DepthTraining even a medium size neural network layer

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 44

o There are some automated tools
◦ Trust them with a grain of salt

◦ Deep Nets are too large and complex

o Usually based on intuition
◦ Then manual grid search

o Optimizing Deep Network
Architecture
◦ DARTS, Liu et al., arXiv 2018

◦ Practical Bayesian Optimization of Machine
Learning Algorithms, Snoek et al., NIPS 2012

◦ https://www.ml4aad.org/automl/literature-on-neural-architecture-search/

Optimizing hyperparameters in Deep Nets

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES

DEEP LEARNING OPTIMIZATIONS - 45

Input normalization

𝑥𝑙
Layer l input distribution at (t)

Backpropagation

Layer l input distribution at (t+0.5)

𝑥𝑙

Layer l input distribution at (t+1)

𝑥𝑙

Batch Normalization

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 46

o Center data to be roughly 0
◦ Activation functions usually “centered” around 0

◦ Convergence usually faster

◦ Otherwise maybe bias on gradient direction might slow down learning

Data pre-processing

ReLU tanh(𝑥) 𝜎(𝑥)





UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 47

o Scale input variables to have similar diagonal covariances 𝑐𝑖 = σ𝑗(𝑥𝑖
(𝑗)
)2

◦ Similar covariancesmore balanced rate of learning for different weights

◦ Rescaling to 1 is a good choice, unless some dimensions are less important

Data pre-processing

𝑥1, 𝑥2, 𝑥3much different covariances

𝑤1

𝑤2

𝑥 = 𝑥1, 𝑥2, 𝑥3
𝑇 , 𝑤 = 𝑤1, 𝑤2, 𝑤3

𝑇 , 𝑎 = tanh(𝑤Τ𝑥)

𝑤3

Generated gradients ቚ
dℒ

𝑑𝜃 𝑥1,𝑥2,𝑥3
: much different

Gradient update harder: 𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑡

𝑑ℒ/𝑑𝑤1
𝑑ℒ/𝑑𝑤2

𝑑ℒ/𝑑𝑤3

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 48

o Input variables should be as decorrelated as possible
◦ Input variables are “more independent”

◦ Model is forced to find non-trivial correlations between inputs

◦ Decorrelated inputs  Better optimization

o Extreme case
◦ extreme correlation (linear dependency) might cause problems [CAUTION]

o Obviously decorrelating inputs is not good when inputs are by definition
correlated, like when in sequences

Data pre-processing

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 49

o Input variables follow a Gaussian distribution (roughly)

o In practice:
◦ from training set compute mean and standard deviation

◦ Then subtract the mean from training samples

◦ Then divide the result by the standard deviation

Unit Normalization: 𝑁 𝜇, 𝜎2 = 𝑁 0, 1

𝑥

𝑥 − 𝜇

𝑥 − 𝜇

𝜎

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 50

o When input dimensions have similar ranges …

o … and with the right non-linearity …

o … centering might be enough
◦ e.g. in images all dimensions are pixels

◦ All pixels have more or less the same ranges

o Just make sure images have mean 0 (𝜇 = 0)

Even simpler: Centering the input

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 51

Batch normalization – The algorithm

o 𝜇ℬ ←
1

𝑚
σ𝑖=1
𝑚 𝑥𝑖 [compute mini-batch mean]

o 𝜎ℬ ←
1

𝑚
σ𝑖=1
𝑚 𝑥𝑖 − 𝜇ℬ

2 [compute mini-batch variance]

o ෝ𝑥𝑖 ←
𝑥𝑖−𝜇ℬ

𝜎ℬ
2+𝜀

[normalize input]

o ෝ𝑦𝑖 ← 𝛾𝑥𝑖 + 𝛽 [scale and shift input]

Trainable parameters

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 52

o Weights change  the
distribution of the layer inputs
changes per round

o Normalize the layer inputs with
batch normalization
◦ Roughly speaking, normalize 𝑥𝑙 to
𝑁(0, 1), then rescale

◦ Rescaling is so that the model
decides itself the scaling and shifting

Batch normalization [Ioffe2015]

𝑥𝑙
Layer l input distribution at (t) Layer l input distribution at (t+0.5) Layer l input distribution at (t+1)

Backpropagation

𝑥𝑙 𝑥𝑙

Batch Normalization

𝑥𝑙

ℒ

𝑥𝑙

ℒ

Batch normalization

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 53

Batch normalization – Intuition I

𝑥𝑙

Layer l input distribution at (t) Layer l input distribution at (t+0.5) Layer l input distribution at (t+1)

Backpropagation

𝑥𝑙 𝑥𝑙

Batch Normalization

o Covariate shift
◦ At each step a layer must not only adapt the weights to fit better the data

◦ It must also adapt to the change of its input distribution, as its input is itself the result
of another layer that changes over steps

o The distribution fed to the layers of a network should be somewhat:
◦ Zero-centered

◦ Constant through time and data

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 54

An intuitive example

𝑙 − 1 𝑙
𝑥𝑙 𝑎𝑙

Distiibution of 𝑥𝑙 #1

Distiibution of 𝑥𝑙 #2

At iteration 𝑖

Picture credit: Team Paperspace

https://blog.paperspace.com/busting-the-myths-about-batch-normalization/

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 55

An intuitive example

𝑙 − 1 𝑙
𝑥𝑙 𝑎𝑙

Distiibution of 𝑥𝑙 #1

Distiibution of 𝑥𝑙 #2

At iteration 𝑖 + 1

Picture credit: Team Paperspace

https://blog.paperspace.com/busting-the-myths-about-batch-normalization/

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 56

An intuitive example

𝑙 − 1 𝑙
𝑥𝑙 𝑎𝑙

Distiibution of 𝑥𝑙 #1

Distiibution of 𝑥𝑙 #2

Although we had originally
picked the black curve for 𝑓,
there are many other
functions that have similar
fitting (losses) on the 𝑖-th
iteration’s dense region, but
better behavior on the 𝑖-th
iteration’s the sparse region

Picture credit: Team Paperspace

https://blog.paperspace.com/busting-the-myths-about-batch-normalization/

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 57

Batch normalization – Intuition II

o Batch norm helps the optimizer to control the mean and variance of the layers
outputs

o This means, the batch norm sort of cancels out 2nd order effects between different
layers

o Loss 2nd order Taylor: ℒ 𝑤 = ℒ 𝑤0 + 𝑤 −𝑤0
𝑇𝑔 +

1

2
𝑤 −𝑤0

𝑇𝐻(𝑤 − 𝑤0)

o Let’s take a miniscule step

ℒ 𝑤 − 𝜀𝑔 = ℒ 𝑤0 − 𝜀𝑔Τ𝑔 +
1

2
𝜀2𝑔𝑇𝐻𝑔

◦ With small 𝐻, 𝜀2𝑔𝑇𝐻𝑔 → 0 and the loss decreases
◦ With large 𝐻 (high curvature), the loss could even increase

o Bach norm simplifies the learning dynamics

Picture credit: ML Explained

http://mlexplained.com/2018/01/10/an-intuitive-explanation-of-why-batch-normalization-really-works-normalization-in-deep-learning-part-1/

What is the mean and standard deviation of the Batch Norm output y = γx + β?

A. μ_y =μ_x + β, σ_y = σ_x + γ
B. μ_y = β, σ_y = γ
C. μ_y = β, σ_y = β + γ
D. μ_y = γ, σ_y = β

Votes: 0

Internet This text box will be used to describe the different message sending methods.

TXT The applicable explanations will be inserted after you have started a session.

Time: 60s

The question will open when you start your

session and slideshow.

What is the mean and standard deviation of the Batch Norm output y = γx +
β?

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 60

Batch normalization – Intuition II

o Bach norm simplifies the learning dynamics
◦ Mean of BatchNorm output is 𝛽, stdev is 𝛾

◦ Mean and Stdev statistics only depend on 𝛽, 𝛾, not complex interactions between layers

◦ The network must only change 𝛽, 𝛾 to counter complex interactions

◦ And it must change the weights only to fit the data better

o This angle better explains what we observe
◦ Why batch norm works better after the nonlinearity?

◦ Why have 𝛾 and 𝛽 if the problem is the covariate shift?

Picture credit: ML Explained

http://mlexplained.com/2018/01/10/an-intuitive-explanation-of-why-batch-normalization-really-works-normalization-in-deep-learning-part-1/

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 61

o Gradients can be stronger  higher learning rates  faster training
◦ Otherwise maybe exploding or vanishing gradients or getting stuck to local minima

o Neurons get activated in a near optimal “regime”

o Better model regularization
◦ Neuron activations not deterministic,

depend on the batch
◦ Model cannot be overconfident

o Acts as a regularizer
◦ The per mini-batch mean and variance are a

noisy version of the true mean and variance
◦ Injected noise reduces overfitting during search

Batch normalization - Benefits

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 62

o How do we ship the Batch Norm layer after training
◦ We might not have batches at test time

o Often keep a moving average of the mean and
variance during training
◦ Plug them in at test time

◦ To the limit the moving average of mini-batch statistics
approaches the batch statistics

From training to test time

o 𝜇ℬ ←
1

𝑚
σ𝑖=1
𝑚 𝑥𝑖

o 𝜎ℬ ←
1

𝑚
σ𝑖=1
𝑚 𝑥𝑖 − 𝜇ℬ

2

o ෝ𝑥𝑖 ←
𝑥𝑖−𝜇ℬ

𝜎ℬ
2+𝜀

o ෝ𝑦𝑖 ← 𝛾𝑥𝑖 + 𝛽

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES

DEEP LEARNING OPTIMIZATIONS - 63

Regularization

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 64

o Neural networks typically have thousands, if not millions of parameters
◦ Usually, the dataset size smaller than the number of parameters

o Overfitting is a grave danger

o Proper weight regularization is crucial to avoid overfitting

w∗ ← argmin𝑤 ෍

(𝑥,𝑦)⊆(𝑋,𝑌)

ℒ(𝑦, 𝑎𝐿 𝑥;𝑤1,…,L) + 𝜆Ω(𝜃)

o Possible regularization methods
◦ ℓ2-regularization
◦ ℓ1-regularization
◦ Dropout

Regularization

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 65

o Most important (or most popular) regularization

w∗ ← argmin𝑤 ෍

(𝑥,𝑦)⊆(𝑋,𝑌)

ℒ(𝑦, 𝑎𝐿 𝑥;𝑤1,…,L) +
𝜆

2
෍

𝑙
𝑤𝑙

2

o The ℓ2-regularization can pass inside the gradient descent update rule

𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑡 𝛻𝜃ℒ + 𝜆𝑤𝑙 ⟹

𝑤𝑡+1 = 1 − 𝜆𝜂𝑡 𝑤
𝑡 − 𝜂𝑡𝛻𝜃ℒ

o 𝜆 is usually about 10−1, 10−2

ℓ2-regularization

“Weight decay”, because
weights get smaller

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 66

o ℓ1-regularization is one of the most important regularization techniques

w∗ ← argmin𝑤 ෍

(𝑥,𝑦)⊆(𝑋,𝑌)

ℒ(𝑦, 𝑎𝐿 𝑥;𝑤1,…,L) +
𝜆

2
෍

𝑙
𝑤𝑙

o Also ℓ1-regularization passes inside the gradient descent update rule

𝑤𝑡+1 = 𝑤𝑡 − 𝜆𝜂𝑡
𝑤 𝑡

|𝑤 𝑡 |
− 𝜂𝑡𝛻𝑤ℒ

o ℓ1-regularization  sparse weights
◦ 𝜆 ↗  more weights become 0

ℓ1-regularization

Sign function

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 67

o To tackle overfitting another popular technique is early stopping

o Monitor performance on a separate validation set

o Training the network will decrease training error, as well validation error
(although with a slower rate usually)

o Stop when validation error starts increasing
◦ This quite likely means the network starts to overfit

Early stopping

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 68

o During training setting activations randomly to 0
◦ Neurons sampled at random from a Bernoulli distribution with 𝑝 = 0.5

o At test time all neurons are used
◦ Neuron activations reweighted by 𝑝

o Benefits
◦ Reduces complex co-adaptations or co-dependencies between neurons

◦ No “free-rider” neurons that rely on others

◦ Every neuron becomes more robust

◦ Decreases significantly overfitting

◦ Improves significantly training speed

Dropout [Srivastava2014]

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 69

o Effectively, a different architecture at every training epoch
◦ Similar to model ensembles

Dropout

Original model

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 70

o Effectively, a different architecture at every training epoch
◦ Similar to model ensembles

Dropout

Epoch 1

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 71

o Effectively, a different architecture at every training epoch
◦ Similar to model ensembles

Dropout

Epoch 1

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 72

o Effectively, a different architecture at every training epoch
◦ Similar to model ensembles

Dropout

Epoch 2

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 73

o Effectively, a different architecture at every training epoch
◦ Similar to model ensembles

Dropout

Epoch 2

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES

DEEP LEARNING OPTIMIZATIONS - 74

Learning rate

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 75

o The right learning rate 𝜂𝑡 very important for fast convergence
◦ Too strong  gradients overshoot and bounce

◦ Too weak,  too small gradients  slow training

o Rule of thumb
◦ Learning rate of (shared) weights prop. to square root of share weight connections

Learning rate

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 76

o The step sizes theoretically should satisfy the following

σ𝑡
∞ 𝜂𝑡 = ∞ and σ𝑡

∞ 𝜂𝑡
2 = 0

o Intuitively, the first term ensures that search will reach the high
probability regions at some point

o The second term ensures convergence to a mode instead of bouncing

Convergence

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 77

o Learning rate per weight is often advantageous
◦ Some weights are near convergence, others not

o Adaptive learning rates are also possible, based on the errors observed
◦ [Sompolinsky1995]

Learning rate

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 78

o Constant
◦ Learning rate remains the same for all epochs

o Step decay
◦ Decrease (e.g. 𝜂𝑡/𝑇 or 𝜂𝑡/𝑇) every T number of epochs

o Inverse decay 𝜂𝑡 =
𝜂0

1+𝜀𝑡

o Exponential decay 𝜂𝑡 = 𝜂0𝑒
−𝜀𝑡

o Often step decay preferred
◦ simple, intuitive, works well and only a

single extra hyper-parameter 𝑇 (𝑇 =2, 10)

Learning rate schedules

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 79

o Bayesian Learning via Stochastic Gradient Langevin Dynamics, M. Welling
and Y. W. Teh, ICML 2011

o Adding the right amount of noise to a standard stochastic gradient
optimization algorithm  converge to samples from the true posterior
distribution as the step size is annealed

o Transition between optimization and Bayesian posterior sampling provides
an inbuilt protection against overfitting

Stochastic Gradient Langevin Dynamics

Δ𝑤𝑡 =
𝜂𝑡
2

𝛻 log 𝑝 𝜃𝑡 +
𝑁

𝑛
෍

𝑖

𝑁

𝛻 log 𝑝 𝑥𝑡𝑖 𝑤𝑡 + 𝜀𝑡 , 𝜀𝑡~𝑁(0, 𝜂𝑡)

SGD Some noise annealed over time

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 80

o Try several log-spaced values 10−1, 10−2, 10−3, … on a smaller set
◦ Then, you can narrow it down from there around where you get the lowest error

o You can decrease the learning rate every 10 (or some other value) full
training set epochs
◦ Although this highly depends on your data

In practice

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES

DEEP LEARNING OPTIMIZATIONS - 81

Weight initialization

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 82

o There are few contradictory requirements

o Weights need to be small enough
◦ around origin (𝟎) for symmetric functions (tanh, sigmoid)

◦ When training starts better stimulate activation functions near their linear regime

◦ larger gradients  faster training

o Weights need to be large enough
◦ Otherwise signal is too weak for any serious learning

Weight initialization

Linear regime

Large gradients

Linear regime

Large gradients

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 83

o Weights must be initialized to preserve the variance of the activations during the
forward and backward computations

◦ Especially for deep learning
◦ All neurons operate in their full capacity

o Input variance == Output variance

Question: Why similar input/output variance?

o Good practice: initialize weights to be asymmetric
◦ Don’t give save values to all weights (like all 𝟎)
◦ In that case all neurons generate same gradient  no learning

o Generally speaking initialization depends on
◦ non-linearities
◦ data normalization

Weight initialization

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 84

o Weights must be initialized to preserve the variance of the activations during the
forward and backward computations

◦ Especially for deep learning
◦ All neurons operate in their full capacity

o Input variance == Output variance

Question: Why similar input/output variance?

Answer: Because the output of one module is the input to another

o Good practice: initialize weights to be asymmetric
◦ Don’t give save values to all weights (like all 𝟎)
◦ In that case all neurons generate same gradient  no learning

o Generally speaking initialization depends on
◦ non-linearities
◦ data normalization

Weight initialization

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 85

o For tanh initialize weights from −
6

𝑑𝑙−1+𝑑𝑙
,

6

𝑑𝑙−1+𝑑𝑙

◦ 𝑑𝑙−1 is the number of input variables to the tanh layer and 𝑑𝑙 is the number of the
output variables

o For a sigmoid −4 ∙
6

𝑑𝑙−1+𝑑𝑙
, 4 ∙

6

𝑑𝑙−1+𝑑𝑙

One way of initializing sigmoid-like neurons

Linear regime

Large gradients

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 86

o For 𝑎 = 𝑤𝑥 the variance is
𝑣𝑎𝑟 𝑎 = 𝐸 𝑥 2𝑣𝑎𝑟 𝑤 + E 𝑤 2𝑣𝑎𝑟 𝑥 + 𝑣𝑎𝑟 𝑥 𝑣𝑎𝑟 𝑤

o Since 𝐸 𝑥 = 𝐸 𝑤 = 0

𝑣𝑎𝑟 𝑎 = 𝑣𝑎𝑟 𝑥 𝑣𝑎𝑟 𝑤 ≈ 𝑑 ⋅ 𝑣𝑎𝑟 𝑥𝑖 𝑣𝑎𝑟 𝑤𝑖

o For 𝑣𝑎𝑟 𝑎 = 𝑣𝑎𝑟 𝑥 ⇒ 𝑣𝑎𝑟 𝑤𝑖 =
1

𝑑

o Draw random weights from

𝑤~𝑁 0, 1/𝑑

where 𝑑 is the number of neurons in the input

Xavier initialization [Glorot2010]

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 87

o Unlike sigmoids, ReLUs ground to 0 the linear activations half the time

o Double weight variance
◦ Compensate for the zero flat-area 

◦ Input and output maintain same variance

◦ Very similar to Xavier initialization

o Draw random weights from w~𝑁 0, 2/𝑑

where 𝑑 is the number of neurons in the input

[He2015] initialization for ReLUs

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 88

o Always check your gradients if not computed automatically

o Check that in the first round you get a random loss

o Check network with few samples
◦ Turn off regularization. You should predictably overfit and have a 0 loss
◦ Turn or regularization. The loss should increase

o Have a separate validation set
◦ Compare the curve between training and validation sets
◦ There should be a gap, but not too large

o Preprocess the data to at least have 0 mean

o Initialize weights based on activations functions
◦ For ReLU Xavier or HeICCV2015 initialization

o Always use ℓ2-regularization and dropout

o Use batch normalization

Babysitting Deep Nets

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES

DEEP LEARNING OPTIMIZATIONS - 89

Summary

o SGD and advanced SGD-like optimizers

o Input normalization

o Optimization methods

o Regularizations

o Architectures and architectural hyper-parameters

o Learning rate

o Weight initialization

Reading material

o Chapter 8, 11

o And the papers mentioned in the slide

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES

DEEP LEARNING OPTIMIZATIONS - 90

Reading material

Deep Learning Book

o Chapter 8, 11

Papers
o Efficient Backprop

o How Does Batch Normalization Help Optimization? (No, It Is Not About
Internal Covariate Shift)

Blog
o https://medium.com/paperspace/intro-to-optimization-in-deep-learning-

momentum-rmsprop-and-adam-8335f15fdee2

o http://ruder.io/optimizing-gradient-descent/

o https://github.com/Jaewan-Yun/optimizer-visualization

o https://blog.paperspace.com/intro-to-optimization-in-deep-learning-gradient-
descent/

http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
https://arxiv.org/abs/1805.11604
https://medium.com/paperspace/intro-to-optimization-in-deep-learning-momentum-rmsprop-and-adam-8335f15fdee2
http://ruder.io/optimizing-gradient-descent/
https://github.com/Jaewan-Yun/optimizer-visualization
https://blog.paperspace.com/intro-to-optimization-in-deep-learning-gradient-descent/

