

Lecture 5: Modern ConvNets

Efstratios Gavves

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES MODERN CONVNETS - 1

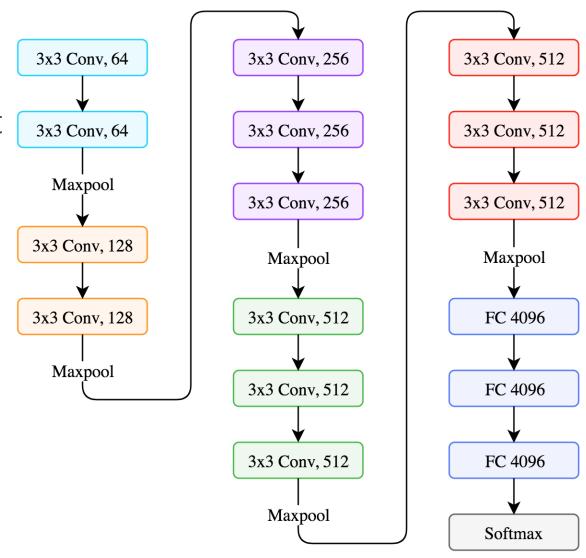
Lecture overview

- Popular Convolutional Neural Networks architectures
- Go deeper on what makes them tick
 - what makes them different

VGGnet

UVA DEEP LEARNING COURSE EFSTRATIOS GAVVES MODERN CONVNETS - 3

ConvNet Configuration							
A	A-LRN	В	С	D	Е		
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight		
layers	layers	layers	layers	layers	layers		
input (224×224 RGB image)							
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64		
	LRN	conv3-64	conv3-64	conv3-64	conv3-64		
			pool				
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128		
		conv3-128	conv3-128	conv3-128	conv3-128		
			pool				
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256		
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256		
			conv1-256	conv3-256	conv3-256		
					conv3-256		
			pool				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
			conv1-512	conv3-512	conv3-512		
					conv3-512		
			pool				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
			conv1-512	conv3-512	conv3-512		
					conv3-512		
maxpool							
FC-4096							
FC-4096							
FC-1000							
soft-max							

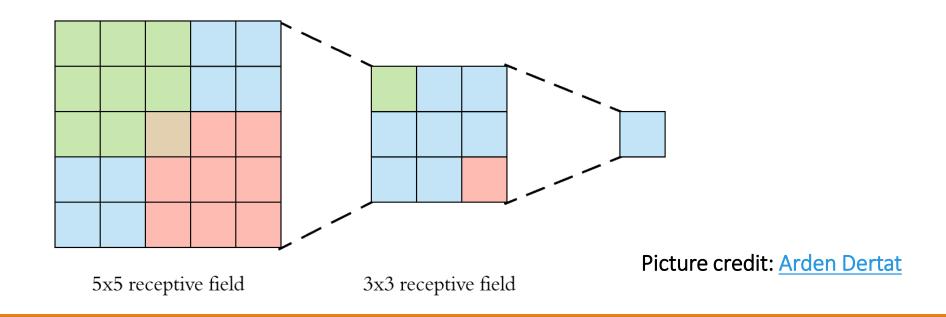

Table 2: Number of parameters (in millions).

			`			
Network	A,A-LRN	В	С	D	Е	
Number of parameters	133	133	134	138	144	

VGG16

7.3% error rate in ImageNet

Compared to 18.2% of AlexNet


Picture credit: Arden Dertat

Characteristics

- \circ Input size: 224 \times 224
- \circ Filter sizes: 3 \times 3
- Convolution stride: 1
 - Spatial resolution preserved
- o Padding: 1
- \circ Max pooling: 2 \times 2 with a stride of 2
- ReLU activations
- No fancy input normalizations
 - No Local Response Normalizations
- Although deeper, number of weights is not exploding

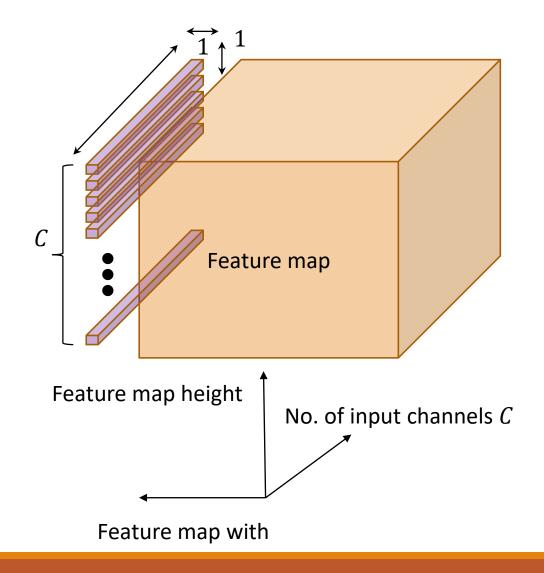
Why 3×3 filters?

- The <u>smallest</u> possible filter to captures the "up", "down", "left", "right"
- \circ Two 3 \times 3 filters have the receptive field of one 5 \times 5
- \circ Three 3 \times 3 filters have the receptive field of ...

Why 3×3 filters?

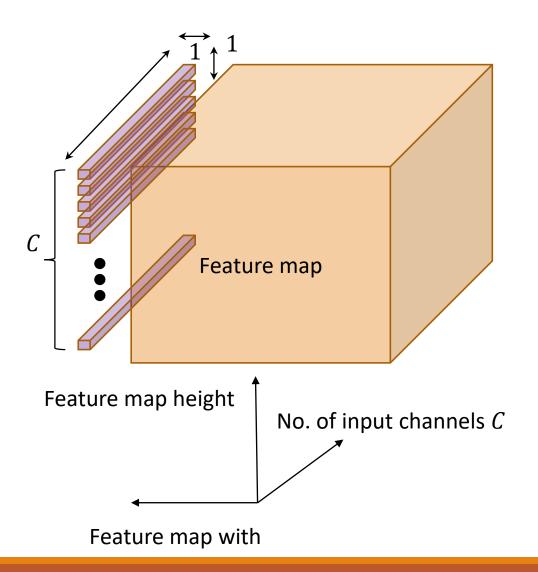
- The <u>smallest</u> possible filter to captures the "up", "down", "left", "right"
- \circ Two 3 \times 3 filters have the receptive field of one 5 \times 5
- \circ Three 3 \times 3 filters have the receptive field of one 7 \times 7
- 1 large filter can be replaced by a deeper stack of successive smaller filters
- o Benefit?

Why 3×3 filters?


- The <u>smallest</u> possible filter to captures the "up", "down", "left", "right"
- \circ Two 3 \times 3 filters have the receptive field of one 5 \times 5
- \circ Three 3 \times 3 filters have the receptive field of one 7 \times 7
- 1 large filter can be replaced by a deeper stack of successive smaller filters
- o Benefit?
- Three more nonlinearities for the same "size" of pattern learning
- Also fewer parameters and regularization

$$(3 \times 3 \times C) \times 3 = 27 \cdot C$$
, $7 \times 7 \times C \times 1 = 49 \cdot C$

 Conclusion: 1 large filter can be replaced by a deeper, potentially more powerful, stack of successive smaller filters


Even smaller filters?

- \circ Also 1x1 filters are used
- Followed by a nonlinearity
- o Why?

Even smaller filters?

- \circ Also 1x1 filters are used
- Followed by a nonlinearity
- O Why?
- Increasing nonlinearities without affecting receptive field sizes
 - Linear transformation of the input channels

Training

- Batch size: 256
- SGD with momentum=0.9
- Weight decay $\lambda = 5 \cdot 10^{-4}$
- Dropout on first two fully connected layers
- \circ Learning rate $\eta_0=10^{-2}$, then decreased by factor of 10 when validation accuracy stopped improving
 - Three times this learning rate decrease
- Faster training
 - Smaller filters →
 - Depth also serves as regularization

Inception

type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool proj	params	ops
convolution	7×7/2	112×112×64	1							2.7K	34M
max pool	3×3/2	56×56×64	0								
convolution	3×3/1	$56 \times 56 \times 192$	2		64	192				112K	360M
max pool	3×3/2	28×28×192	0								
inception (3a)		28×28×256	2	64	96	128	16	32	32	159K	128M
inception (3b)		28×28×480	2	128	128	192	32	96	64	380K	304M
max pool	3×3/2	14×14×480	0								
inception (4a)		14×14×512	2	192	96	208	16	48	64	364K	73M
inception (4b)		14×14×512	2	160	112	224	24	64	64	437K	88M
inception (4c)		14×14×512	2	128	128	256	24	64	64	463K	100M
inception (4d)		14×14×528	2	112	144	288	32	64	64	580K	119M
inception (4e)		14×14×832	2	256	160	320	32	128	128	840K	170M
max pool	3×3/2	$7 \times 7 \times 832$	0								
inception (5a)		$7 \times 7 \times 832$	2	256	160	320	32	128	128	1072K	54M
inception (5b)		$7 \times 7 \times 1024$	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	$1 \times 1 \times 1024$	0								
dropout (40%)		$1\times1\times1024$	0								
linear		1×1×1000	1							1000K	1M
softmax		1×1×1000	0								

Table 1: GoogLeNet incarnation of the Inception architecture

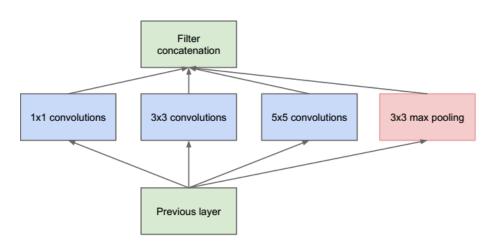
Basic idea

o Problem?

Picture credit: **Bharath Raj**

Basic idea

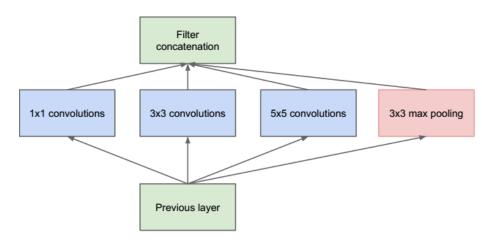
- Salient parts have great variation in sizes
- Hence, the receptive fields should vary in size accordingly
- Naively stacking convolutional operations is expensive
- Very deep nets are prone to overfitting



Picture credit: **Bharath Raj**

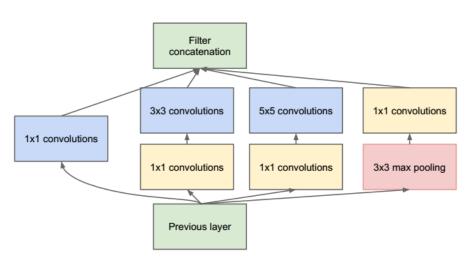
Inception module

- \circ Multiple kernel filters of different sizes (1 × 1, 3 × 3, 5 × 5)
 - Naïve version
- o Problem?



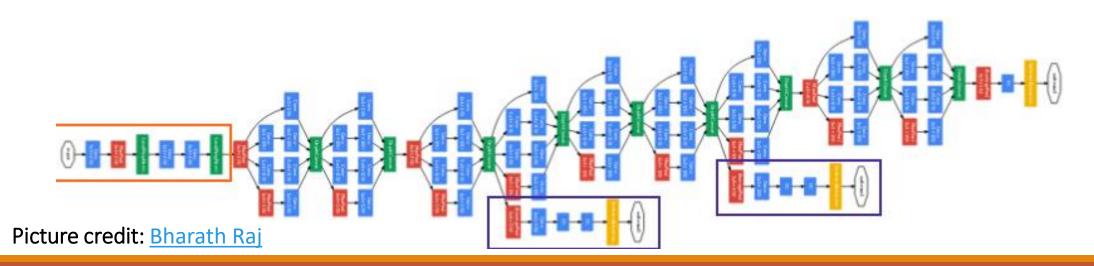
(a) Inception module, naïve version

Picture credit: **Bharath Raj**


Inception module

- \circ Multiple kernel filters of different sizes (1 × 1, 3 × 3, 5 × 5)
 - Naïve version
- o Problem?
 - Very expensive!
- \circ Add intermediate 1×1 convolutions

Picture credit: **Bharath Raj**


(a) Inception module, naïve version

(b) Inception module with dimension reductions

Architecture

- 9 Inception Modules
- 22 layers deep (27 with the pooling layers)
- Global average pooling at the end of last Inception Module
- 6.67% Imagenet error, compared to 18.2% of Alexnet

Houston, we have a problem

Problem: Vanishing gradients

- The network was too deep (at the time)
- o Roughly speaking, backprop is lots of matrix multiplications

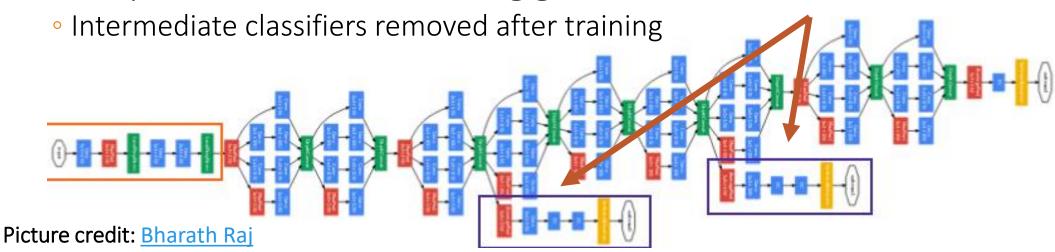
$$\frac{\partial \mathcal{L}}{\partial w^{l}} = \frac{\partial \mathcal{L}}{\partial a^{L}} \cdot \frac{\partial a^{L}}{\partial a^{L-1}} \cdot \frac{\partial a^{L-1}}{\partial a^{L-2}} \cdot \dots \cdot \frac{\partial a^{l}}{\partial w^{l}}$$

- o Many of intermediate terms $< 1 \rightarrow$ the final $\frac{\partial \mathcal{L}}{\partial w^l}$ gets extremely small
- Extremely small gradient → ?

Picture credit: Anish Singh Walia

Problem: Vanishing gradients (more details later)

- The network was too deep (at the time)
- o Roughly speaking, backprop is lots of matrix multiplications

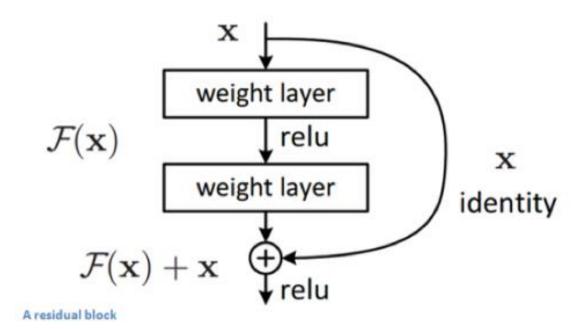

$$\frac{\partial \mathcal{L}}{\partial w^{l}} = \frac{\partial \mathcal{L}}{\partial a^{L}} \cdot \frac{\partial a^{L}}{\partial a^{L-1}} \cdot \frac{\partial a^{L-1}}{\partial a^{L-2}} \cdot \dots \cdot \frac{\partial a^{l}}{\partial w^{l}}$$

- o Many of intermediate terms $< 1 \rightarrow$ the final $\frac{\partial \mathcal{L}}{\partial w^l}$ gets extremely small
- Extremely small gradient → Extremely slow learning

Picture credit: Anish Singh Walia

Architecture

- 9 Inception Modules
- 22 layers deep (27 with the pooling layers)
- Global average pooling at the end of last Inception Module
- Because of the increased depth → Vanishing gradients
- Inception solution to vanishing gradients: intermediate classifiers



Inceptions v2, v3, v4,

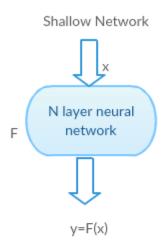
- \circ Factorize 5 \times 5 in two 3 \times 3 filters
- \circ Factorize $n \times n$ in two $n \times 1$ and $1 \times n$ filters (quite a lot cheaper)
- Make nets wider

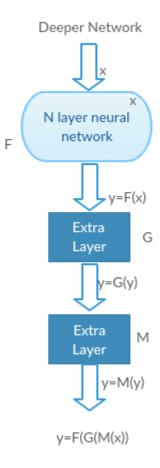
o RMSprop, BatchNorms, ... Filter Concat Filter Concat Filter Concat 3x3 nx1 1x3 3x1 3x3 3x3 1x1 1xn 1xn 1x1 1x1 Pool 1x1 1x1 1x1 1x1 Pool 1x1 1x1 1x1 Base Base Picture credit: Bharath Raj Base

ResNets DenseNets HighwayNets

UVA DEEP LEARNING COURSE EFSTRATIOS GAVVES MODERN CONVNETS - 23

Some facts


- The first truly Deep Network, going deeper than 1,000 layers
- More importantly, the first Deep Architecture that proposed a novel concept on how to gracefully go deeper than a few dozen layers
 - Not simply getting more GPUs, more training time, etc.
- Smashed Imagenet, with a 3.57% error (in ensembles)
- Won all object classification, detection, segmentation, etc. challenges


What is the problem?

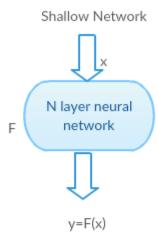
- Very deep networks stop learning after a bit
 - An accuracy is reached, then the network saturates and starts unlearning
- Signal gets lost through so many layers
- Thought experiment: take a trained shallow network and just stack a few identity layers

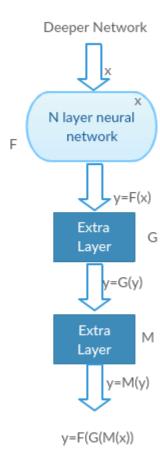
$$a = I(x) \rightarrow a \equiv x$$

O What should happen?

G and M act as Identity Functions. Both the Networks Give same output

Picture credit: Prakash Jay


What is the problem?


- Very deep networks stop learning after a bit
 - An accuracy is reached, then the network saturates and starts unlearning
- Signal gets lost through so many layers
- Thought experiment: take a trained shallow network and just stack a few identity layers

$$a = I(x) \rightarrow a \equiv x$$

- The network should in principle just keep its existing knowledge
- Surprisingly, they start failing

Picture credit: Prakash Jay

G and M act as Identity Functions. Both the Networks Give same output

Basic idea

- Let's say we have the neural network nonlinearity a = F(x)
- Easier to learn a function a = F(x) to model differences $a \sim \delta y$ than to model absolutes $a \sim y$
 - Think of it like in input normalization → you normalize around 0
 - Think of it like in regression → you model differences around the mean value
- O So, ask the neural network to explicitly model difference mapping $F(x) = H(x) x \Rightarrow H(x) = F(x) + x$
- \circ F(x) are the stacked nonlinearities
- x is the input to the nonlinear layer

ResNet block

$$OH(x) = F(x) + x$$

- If dimensions don't match
 - Either zero padding
 - Or a projection layer to match dimensions

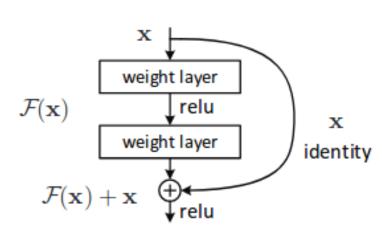
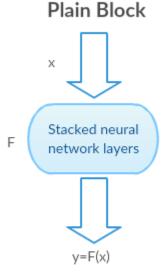
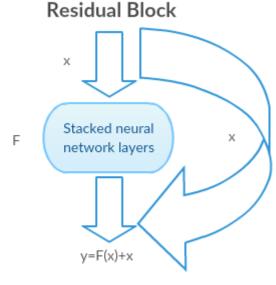
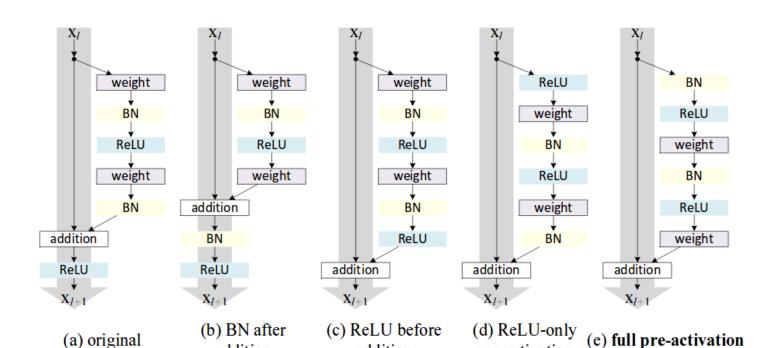




Figure 2. Residual learning: a building block.



Hard to get F(x)=x and make y=x an identity mapping

Easy to get F(x)=0 and make y=x an identity mapping

ResNet architectures & ResNeXt

case	Fig.	ResNet-110	ResNet-164
original Residual Unit [1]	Fig. 4(a)	6.61	5.93
BN after addition	Fig. 4(b)	8.17	6.50
ReLU before addition	Fig. 4(c)	7.84	6.14
ReLU-only pre-activation	Fig. 4(d)	6.71	5.91
full pre-activation	Fig. 4(e)	6.37	5.46

addition

pre-activation

ResNeXt

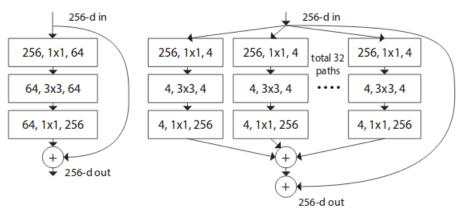


Figure 1. **Left**: A block of ResNet [14]. **Right**: A block of ResNeXt with cardinality = 32, with roughly the same complexity. A layer is shown as (# in channels, filter size, # out channels).

	setting	top-1 err (%)	top-5 err (%)
1× complexity refer	ences:		
ResNet-101	1 × 64d	22.0	6.0
ResNeXt-101	32 × 4d	21.2	5.6
2× complexity mode	els follow:		
ResNet-200 [15]	1 × 64d	21.7	5.8
ResNet-101, wider	1 × 100 d	21.3	5.7
ResNeXt-101	2 × 64d	20.7	5.5
ResNeXt-101	64 × 4d	20.4	5.3

Table 4. Comparisons on ImageNet-1K when the number of FLOPs is increased to $2 \times$ of ResNet-101's. The error rate is evaluated on the single crop of 224×224 pixels. The highlighted factors are the factors that increase complexity.

addition

Some observations

- BatchNorms absolutely necessary because of vanishing gradients
- Networks with skip connections (like ResNets) converge faster than the same network without skip connections
- Identity shortcuts cheaper and almost equal to project shortcuts
- Hopefully, more on Neural Network dynamics later

HighwayNet

 Similar to ResNets, only introducing a gate with learnable parameters on the importance of each skip connection

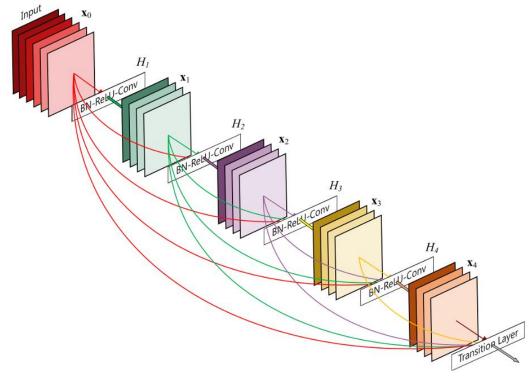
$$y = H(x, W_H) \cdot T(x, W_T) + x \cdot (1 - T(x, W_T))$$

Similar to ...

HighwayNet

 Similar to ResNets, only introducing a gate with learnable parameters on the importance of each skip connection

$$y = H(x, W_H) \cdot T(x, W_T) + x \cdot (1 - T(x, W_T))$$

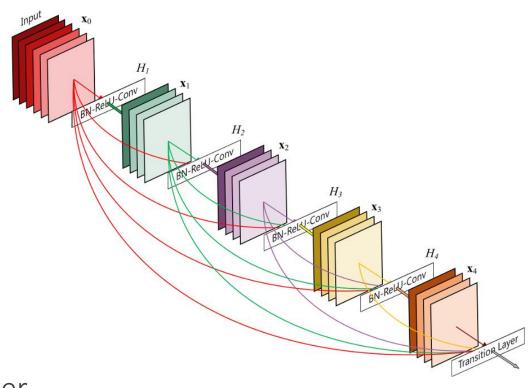

Similar to ... LSTMs as we will say later

DenseNet

 Add skip connections to multiple forward layers

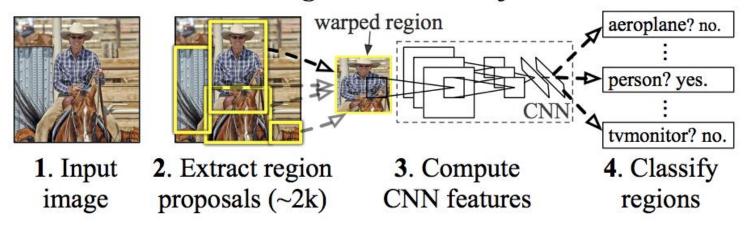
$$y = h(x_l, x_{l-1}, ..., x_{l-n})$$

o Why?

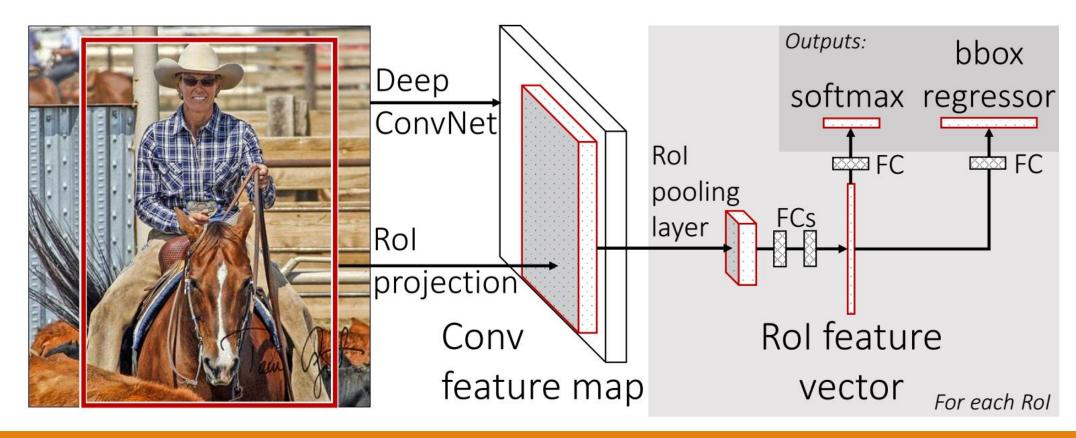


DenseNet

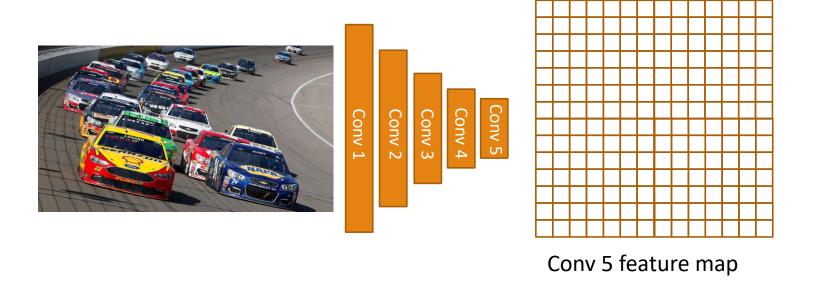
 Add skip connections to multiple forward layers


$$y = h(x_l, x_{l-1}, \dots, x_{l-n})$$

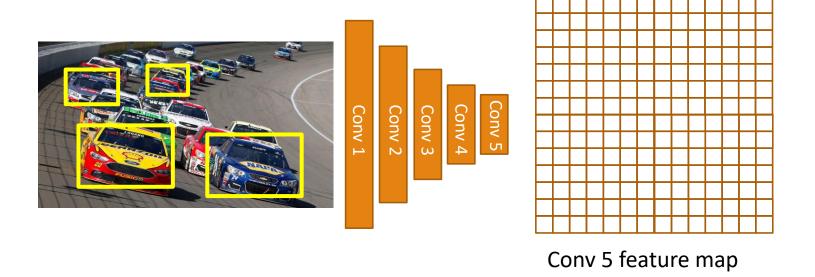
- Assume layer 1 captures edges, while layer 5 captures faces (and other stuff)
- Why not have a layer that combines both faces and edges (e.g. to model a scarred face)
- Standard ConvNets do not allow for this
 - Layer 6 combines only layer 5 patterns, not lower

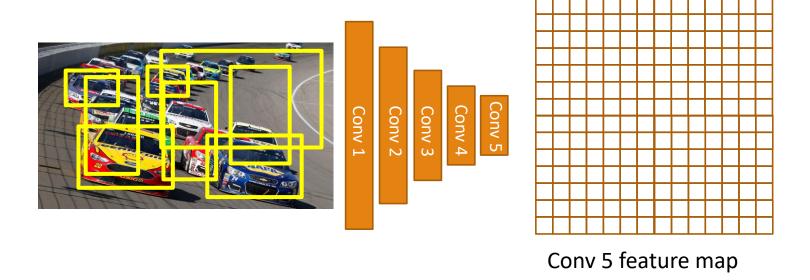

R-CNNs Fully Convolutional Siamese Nets for Tracking

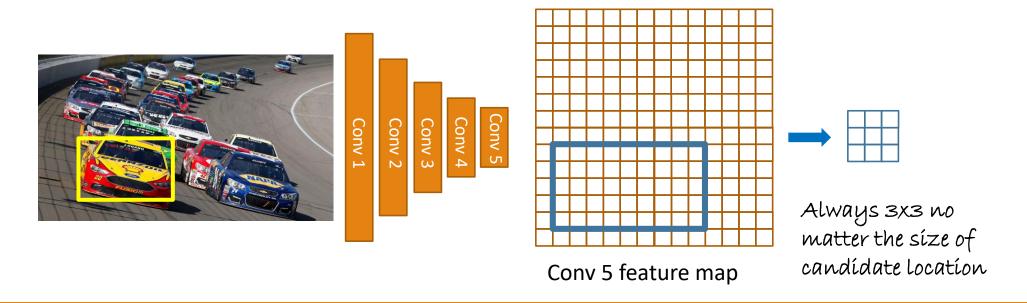
R-CNN: Regions with CNN features

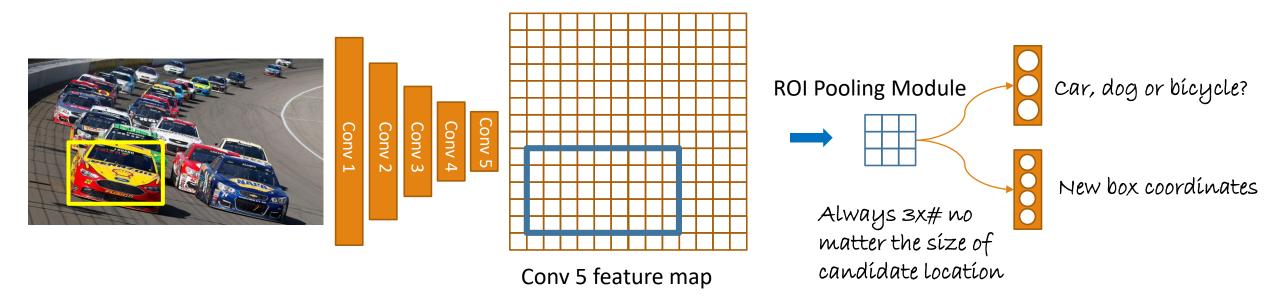


Sliding window on feature maps

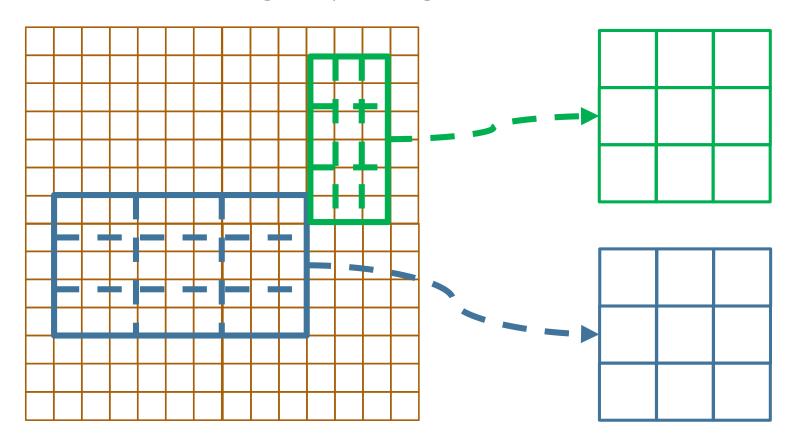

- SPPnet [He2014]
- Fast R-CNN [Girshick2015]


Process the whole image up to conv5


- Process the whole image up to conv5
- Compute possible locations for objects


- Process the whole image up to conv5
- Compute possible locations for objects (some correct, most wrong)

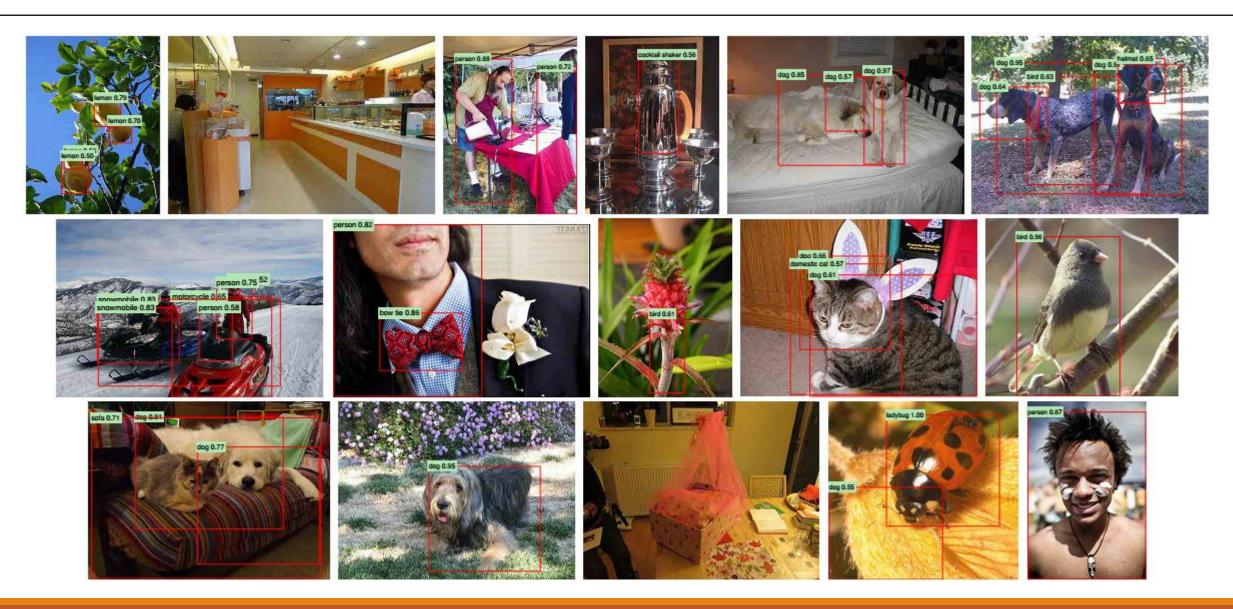
- Process the whole image up to conv5
- Compute possible locations for objects
- Given single location → ROI pooling module extracts fixed length feature



- Process the whole image up to conv5
- Compute possible locations for objects
- Given single location → ROI pooling module extracts fixed length feature
- Connect to two final layers, 1 for classification, 1 for box refinement

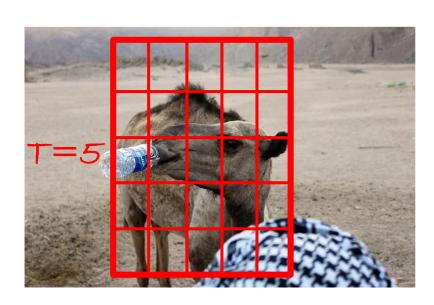
Region-of-Interest (ROI) Pooling Module

- \circ Divide feature map in TxT cells
 - The cell size will change depending on the size of the candidate location



Always 3x3 no matter the size of candidate location

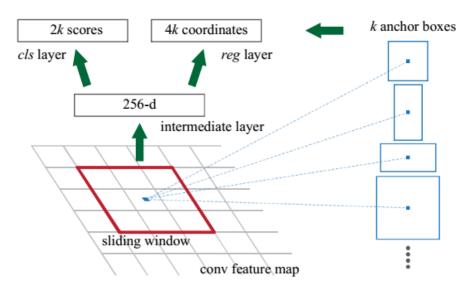
Smart fine-tuning


- Normally samples in a mini-batch completely random
- Instead, organize mini-batches by ROIs
- o 1 mini-batch = N (images) $\times \frac{R}{N}$ (candidate locations)
- Feature maps shared \rightarrow training speed-up by a factor of $\frac{R}{N}$
- Mini-batch samples might be correlated
 - In Fast R-CNN that was not observed

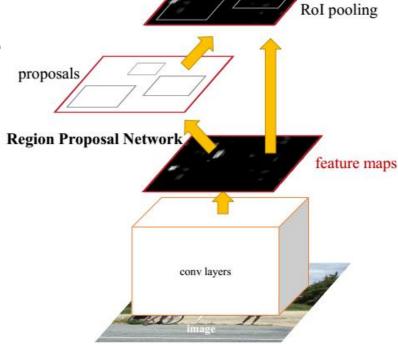
Some results

Fast-RCNN

- Reuse convolutions for different candidate boxes
 - Compute feature maps only once
- Region-of-Interest pooling
 - Define stride relatively \rightarrow box width divided by predefined number of "poolings" T
 - Fixed length vector
- End-to-end training!
- (Very) Accurate object detection
- (Very) Faster
 - Less than a second per image
- External box proposals needed

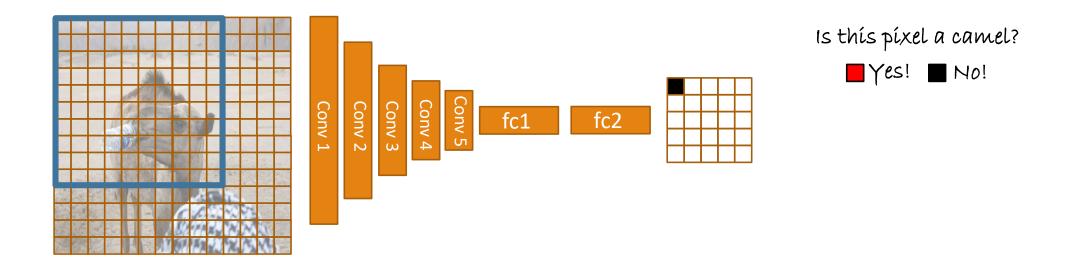


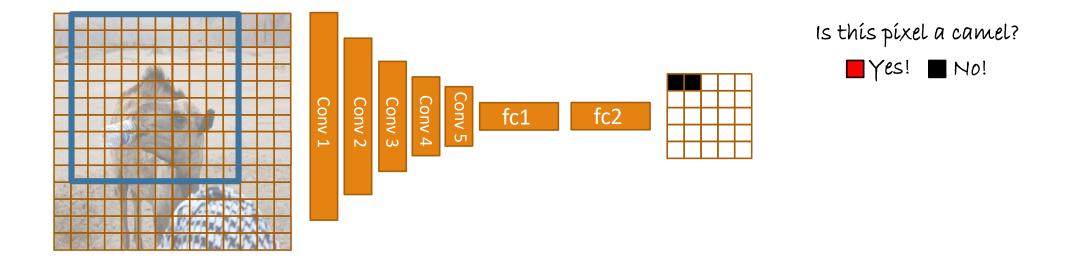
Faster R-CNN [Girshick2016]

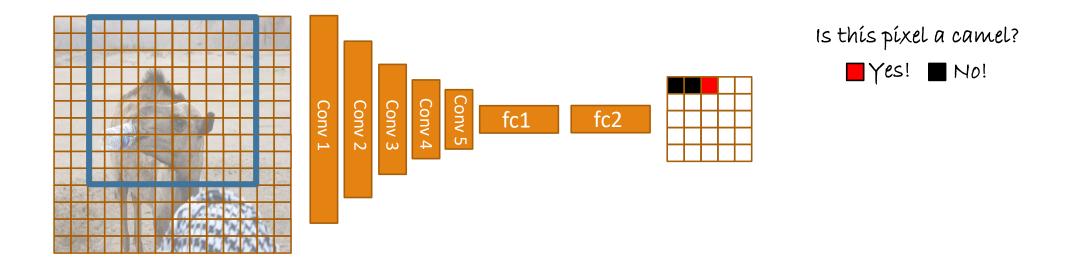

○ Fast R-CNN → external candidate locations

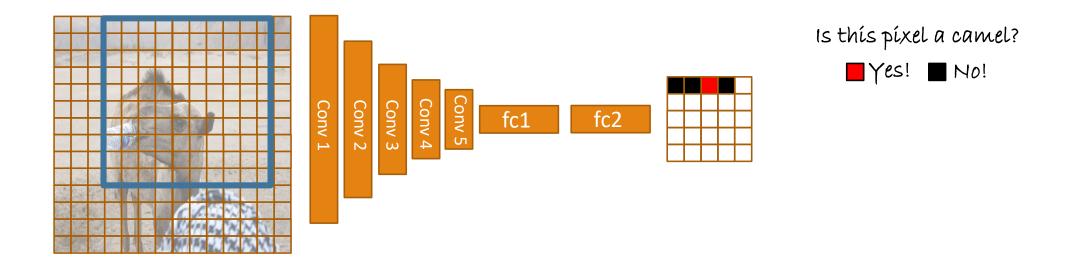
Faster R-CNN -> deep network proposes candidate locations

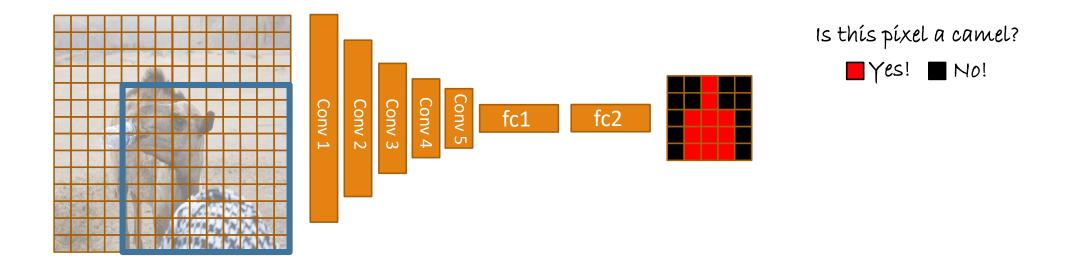
 \circ Slide the feature map $\rightarrow k$ anchor boxes per slide

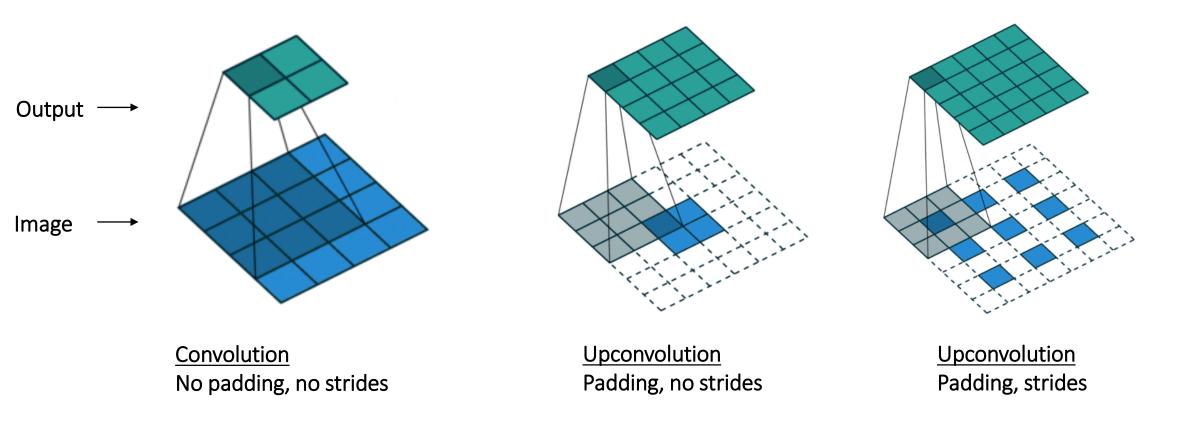


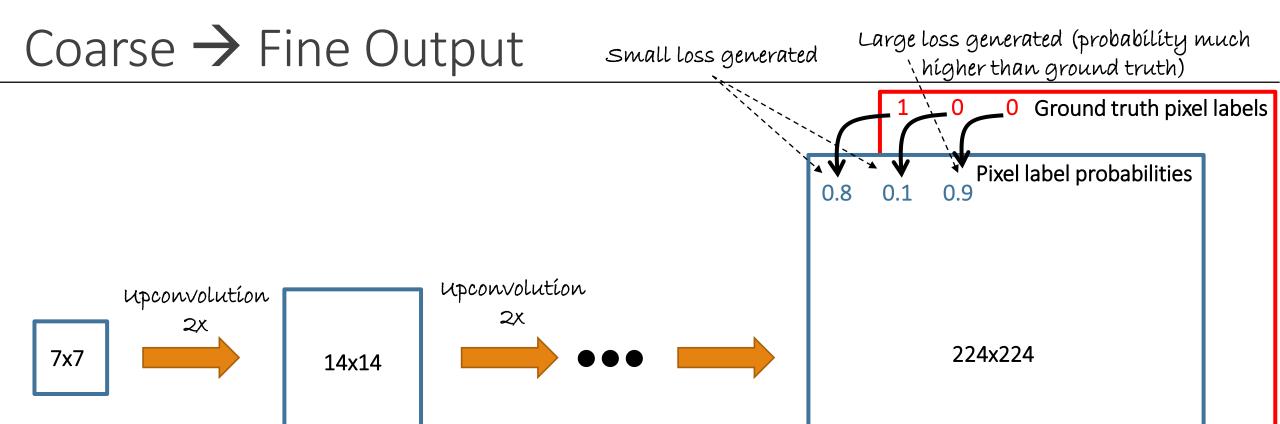

Region Proposal Network




classifier


Figure 2: Faster R-CNN is a single, unified network for object detection. The RPN module serves as the 'attention' of this unified network.

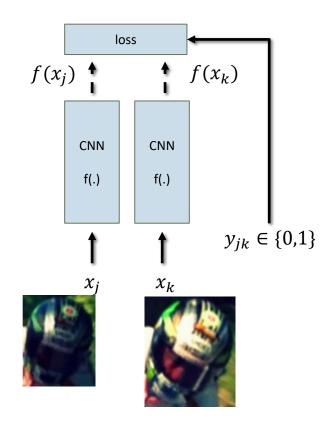




Deconvolutional modules

More visualizations: https://github.com/vdumoulin/conv_arithmetic

Siamese Networks for Tracking


- While tracking, the only definitely correct training example is the first frame
 - All others are inferred by the algorithm
- If the "inferred positives" are correct, then the model is already good enough and no update is needed
- If the "inferred positives" are incorrect, updating the model using wrong positive examples will eventually destroy the model

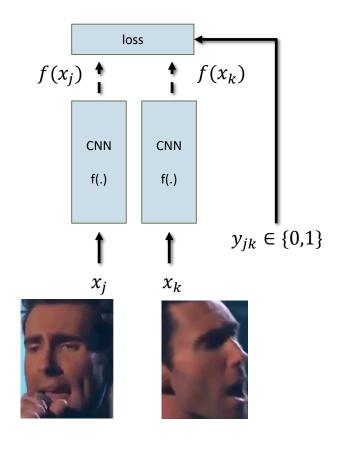
 Siamese Instance Search for Tracking, R. Tao, E. Gavves, A. Smeulders, CVPR 2016

Basic idea

- No model updates through time to avoid model contamination
- \circ Instead, learn invariance model $f(\mathbf{d}x)$
 - invariances shared between objects
 - reliable, external, rich, category-independent, data
- Assumption
 - The appearance variances are shared amongst object and categories
 - Learning can accurate enough to identify common appearance variances
- Solution: Use a Siamese Network to compare patches between images
 - Then "tracking" equals finding the most similar patch at each frame (no temporal modelling)

Training

Marginal Contrastive Loss:


$$L(x_j, x_k, y_{jk}) = \frac{1}{2} y_{jk} D^2 + \frac{1}{2} (1 - y_{jk}) \max(0, \sigma - D^2)$$

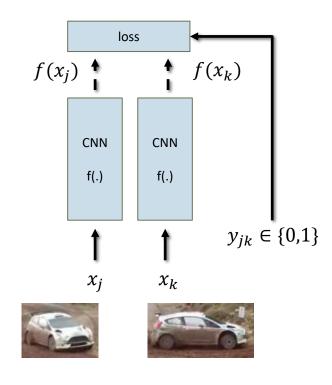
$$D = \|f(x_j) - f(x_k)\|_2$$

Matching function (after learning):

$$m(x_j, x_k) = f(x_j) \cdot f(x_k)$$

Training

Marginal Contrastive Loss:


$$L(x_j, x_k, y_{jk}) = \frac{1}{2} y_{jk} D^2 + \frac{1}{2} (1 - y_{jk}) \max(0, \sigma - D^2)$$

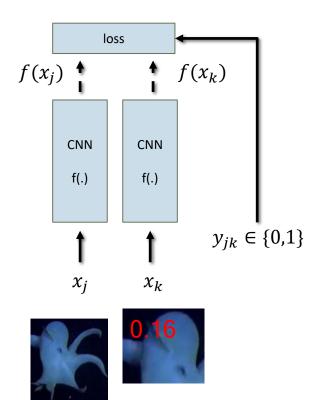
$$D = \|f(x_j) - f(x_k)\|_2$$

Matching function (after learning):

$$m(x_j, x_k) = f(x_j) \cdot f(x_k)$$

Training

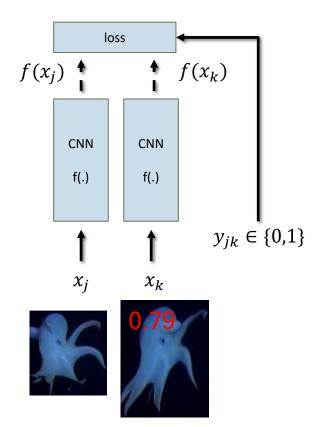
Marginal Contrastive Loss:


$$L(x_j, x_k, y_{jk}) = \frac{1}{2} y_{jk} D^2 + \frac{1}{2} (1 - y_{jk}) \max(0, \sigma - D^2)$$

$$D = \|f(x_j) - f(x_k)\|_2$$

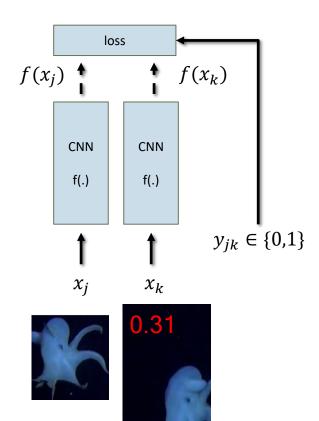
Matching function (after learning):

$$m(x_j, x_k) = f(x_j) \cdot f(x_k)$$


Testing

Predicting the next location

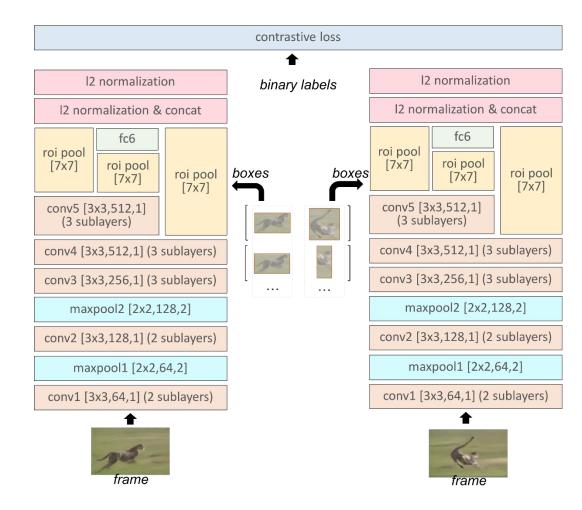
- 1. Define query x_0 at t=0
- 2. Set current target location x_t
- 3. Measure similarity $\mathbf{s}_{t+1}^k = s(x_0, x_{t+1}^k)$ of x_0 with multiple boxes x'_{t+1} sampled around x_t
- 4. Select next target location with maximum similarity $\mathbf{s}_{\mathsf{t+1}}^k$
- 5. Go to 2


Testing

Predicting the next location

- 1. Define query x_0 at t=0
- 2. Set current target location x_t
- 3. Measure similarity $\mathbf{s}_{t+1}^k = s(x_0, x_{t+1}^k)$ of x_0 with multiple boxes x'_{t+1} sampled around x_t
- 4. Select next target location with maximum similarity $\mathbf{s}_{\mathsf{t+1}}^k$
- 5. Go to 2

Testing



Predicting the next location

- 1. Define query x_0 at t=0
- 2. Set current target location x_t
- 3. Measure similarity $\mathbf{s}_{t+1}^k = s(x_0, x_{t+1}^k)$ of x_0 with multiple boxes x'_{t+1} sampled around x_t
- 4. Select next target location with maximum similarity $\mathbf{s}_{\mathsf{t+1}}^k$
- 5. Go to 2

Network Architecture

- Very few max pooling layers → improve localization accuracy
- Region-of-interest (ROI) pooling →
 process all boxes in a frame in one single pass through the network
- O Use outputs of multiple layers
 (conv4_3, conv5_3, fc6) → robust
 in various situations

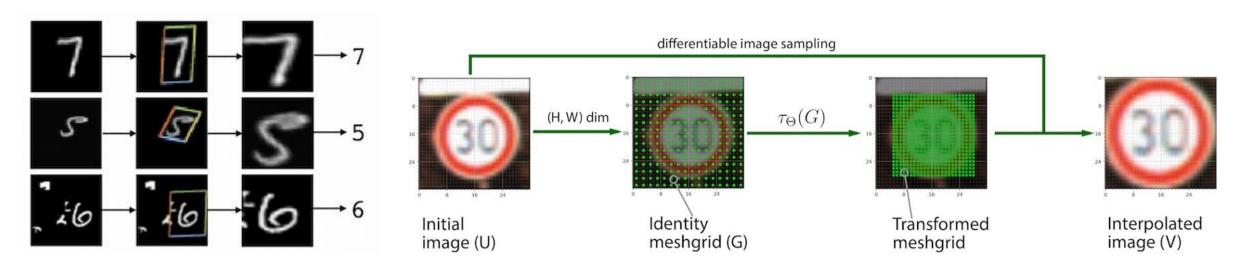
The two branches share the parameters.

Things to remember

- Operate on pairs
 - Two patches as input
 - Compute similarity
- Function learnt once
 - external, rich video dataset
 - object box annotations
- Once learned externally applied as is
 - to videos of previously unseen targets
 - to videos of previously unseen categories

Spatial Transformer Network

batch = 0/200 theta = $1.02 \ 0.02 \ -0.02$ $-0.02 \ 1.02 \ -0.02$



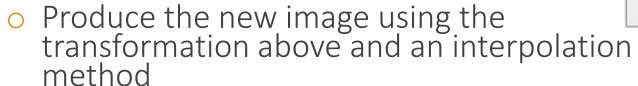
UVA DEEP LEARNING COURSE EFSTRATIOS GAVVES MODERN CONVNETS - 64

Problem

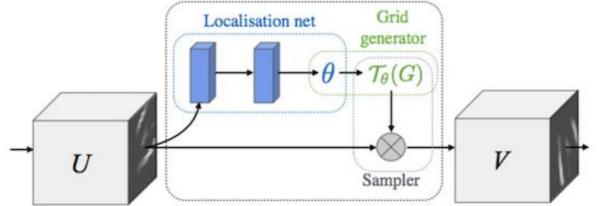
- ConvNets sometimes are robust enough to input changes
 - While pooling gives some invariance, only in deeper layers the pooling receptive field is large enough for this invariance to be noteworthy
 - One way to improve robustness: Data augmentation
- Smarter way: Spatial Transformer Networks

Basic idea

Define a geometric transformation matrix


$$\Theta = \begin{bmatrix} \theta_{11} & \theta_{12} & \theta_{13} \\ \theta_{21} & \theta_{22} & \theta_{23} \end{bmatrix}$$

- Four interesting transformations
 - Identity, i.e. $\Theta = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$
- Rotation, e.g., $\Theta \approx \begin{bmatrix} 0.7 & -0.7 & 0 \\ 0.7 & 0.7 & 0 \end{bmatrix}$ for 45^o , as $\cos(\frac{\pi}{4}) \approx 0.7$ Zooming in, e.g. $\Theta \approx \begin{bmatrix} 0.5 & 0 & 0 \\ 0 & 0.5 & 0 \end{bmatrix}$ for 2X zooming in
- Zooming in, e.g. $\Theta \approx \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \end{bmatrix}$ for 2X zooming out


Basic idea

o Then, define a mesh grid (x_i^t, y_i^t) on the original image and apply the geometric transformations

$$\begin{bmatrix} x_i^s \\ y_i^s \end{bmatrix} = \Theta \cdot \begin{bmatrix} x_i^t \\ y_i^t \\ 1 \end{bmatrix}$$

- \circ Learn the parameters Θ and the meshgrid from the data
- A localization network learns to predict Θ given a new image

C3D i3D

Inflated Inception-V1

Rec. Field: Rec. Field: 11,27,27 7,11,11 1x3x3 1x3x3 Video — Max-Pool stride 1,2,2 Rec. Field: 23,75,75 3x3x3 Inc. Max-Pool stride 2 Rec. Field: Rec. Field: 99,539,539 59,219,219 2x2x2 2x7x7 Predictions Max-Pool Inc. Inc. Avg-Pool stride 2

Inception Module (Inc.)

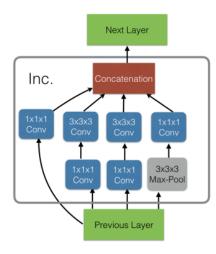


Figure 3. The Inflated Inception-V1 architecture (left) and its detailed inception submodule (right). The strides of convolution and pooling operators are 1 where not specified, and batch normalization layers, ReLu's and the softmax at the end are not shown. The theoretical sizes of receptive field sizes for a few layers in the network are provided in the format "time,x,y" – the units are frames and pixels. The predictions are obtained convolutionally in time and averaged.

Basic idea

- Replace 2D convolutions with 3D convolutions
- Train on same domain data
 - Videos

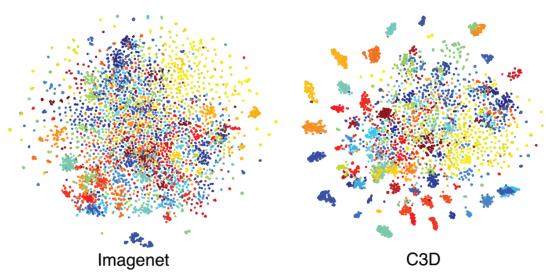
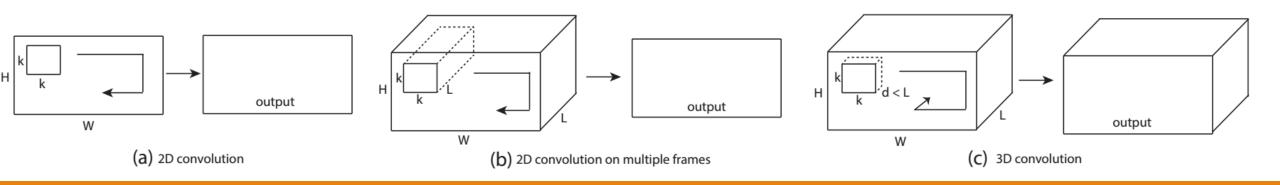



Figure 6. **Feature embedding**. Feature embedding visualizations of Imagenet and C3D on UCF101 dataset using t-SNE [43]. C3D features are semantically separable compared to Imagenet suggesting that it is a better feature for videos. Each clip is visualized as a point and clips belonging to the same action have the same color. Best viewed in color.

Some results

- Generally, it works pretty nicely
- Not for all temporal tasks though, as we will see later on in the course

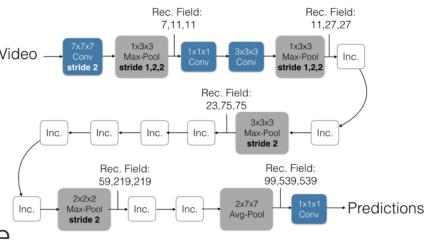

Method	Accuracy (%)			
Imagenet + linear SVM	68.8			
iDT w/ BoW + linear SVM	76.2			
Deep networks [18]	65.4			
Spatial stream network [36]	72.6			
LRCN [6]	71.1			
LSTM composite model [39]	75.8			
C3D (1 net) + linear SVM	82.3			
C3D (3 nets) + linear SVM	85.2			
iDT w/ Fisher vector [31]	87.9			
Temporal stream network [36]	83.7			
Two-stream networks [36]	88.0			
LRCN [6]	82.9			
LSTM composite model [39]	84.3			
Conv. pooling on long clips [29]	88.2			
LSTM on long clips [29]	88.6			
Multi-skip feature stacking [25]	89.1			
C3D (3 nets) + iDT + linear SVM	90.4			

Table 3. Action recognition results on UCF101. C3D compared with baselines and current state-of-the-art methods. Top: simple features with linear SVM; Middle: methods taking only RGB frames as inputs; Bottom: methods using multiple feature combinations.

Inflated Inception-V1

Inception Module (Inc.)

- o i3D = C3D + Inception
 - Plus some neat tricks
- Take 2D filters and inflate them so that they become 3D filters
- Then, use them as initialization

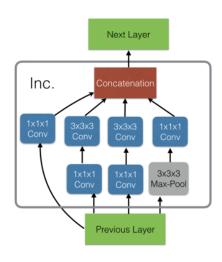
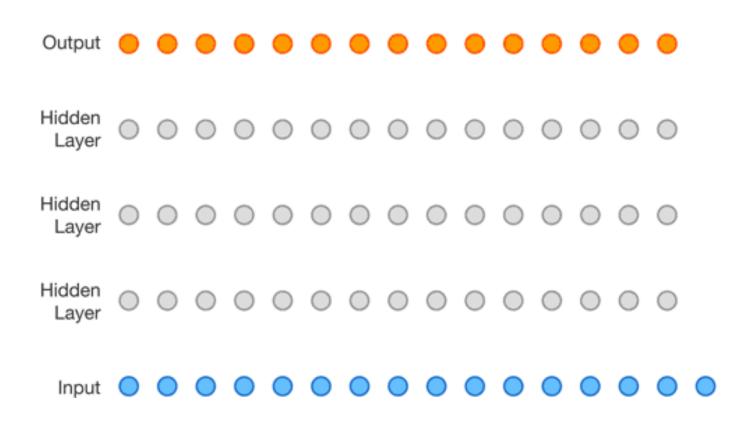


Figure 3. The Inflated Inception-V1 architecture (left) and its detailed inception submodule (right). The strides of convolution and pooling operators are 1 where not specified, and batch normalization layers, ReLu's and the softmax at the end are not shown. The theoretical sizes of receptive field sizes for a few layers in the network are provided in the format "time,x,y" – the units are frames and pixels. The predictions are obtained convolutionally in time and averaged.

	UCF-101			HMDB-51			Kinetics		
Architecture	RGB	Flow	RGB + Flow	RGB	Flow	RGB + Flow	RGB	Flow	RGB + Flow
(a) LSTM	81.0	_	_	36.0	_	_	63.3	_	_
(b) 3D-ConvNet	51.6	_	_	24.3	_	_	56.1	_	_
(c) Two-Stream	83.6	85.6	91.2	43.2	56.3	58.3	62.2	52.4	65.6
(d) 3D-Fused	83.2	85.8	89.3	49.2	55.5	56.8	_	_	67.2
(e) Two-Stream I3D	84.5	90.6	93.4	49.8	61.9	66.4	71.1	63.4	74.2

Table 2. Architecture comparison: (left) training and testing on split 1 of UCF-101; (middle) training and testing on split 1 of HMDB-51; (right) training and testing on Kinetics. All models are based on ImageNet pre-trained Inception-v1, except 3D-ConvNet, a C3D-like [31] model which has a custom architecture and was trained here from scratch. Note that the Two-Stream architecture numbers on individual RGB and Flow streams can be interpreted as a simple baseline which applies a ConvNet independently on 25 uniformly sampled frames then averages the predictions.


Summary

- Popular Convolutional Neural Networks architectures
- Go deeper on what makes them tick & what makes them different

Reading material

All the papers from the models presented

WaveNet

UVA DEEP LEARNING COURSE EFSTRATIOS GAVVES MODERN CONVNETS - 73