


Lecture overview

o Sequential data

o Recurrent Neural Networks

o Backpropagation through time

o Exploding and vanishing gradients
o LSTMs and variants

o Encoder-Decoder Architectures
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Sequence data

Sequence applications

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES
RECURRENT NEURAL NETWORKS - 3




Example of sequential data

o Videos
o Other?
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Example of sequential data

o Videos
o Other?

o Time series data
°Stock exchange
°Biological measurements
°Climate measurements
> Market analysis

o Speech/Music

o User behavior in websites
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Applications

o Machine translation
o Image captioning
o Question answering
o Video generation
o Speech synthesis

o Speech recognition
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A sequence of probabilities

o Sequence =2 Chain rule of probabilities
pe) = | [peilry, xio)
i

o For instance, let’s model that “This i1s the best course!”

p(This 1is the best course!) =
= p(This) -

p(is|This) -

p(the|This is)-..-

p(!|This is the best course)
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What is the problem with sequences?

0 ?PP?
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What is the problem with sequences?

o Sequences might be of arbitrary or even infinite lengths

o Infinite parameters?
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What is the problem with sequences?

o Sequences might be of arbitrary or even infinite lengths

o Infinite parameters?

o No, better share and reuse parameters

o RecurrentModel (I think, therefore, I am. | 0)

can be reused also for

RecurrentModel (Everything is repeated in circles. History is a
Master because 1t teaches that i1t doesn’t exist. It 1s the

permutations that matter| 0)
o For a ConvNet that is not straightforward
o Why?
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What is the problem with sequences?

o Sequences might be of arbitrary or even infinite lengths

o Infinite parameters?

o No, better share and reuse parameters

o RecurrentModel (I think, therefore, I am. | 0)

can be reused also for

RecurrentModel (Everything is repeated in circles. History is a
Master because 1t teaches that i1t doesn’t exist. It 1s the

permutations that matter| 0)
o For a ConvNet that is not straightforward
o Why? Fixed dimensionalities
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Some properties of sequences?
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Some properties of sequences

o Data inside a sequence are non identically, independently distributed (IID)
°The next “word” depends on the previous “words”
°|ldeally on all of them

o We need context, and we need memory!

o Big question: How to model context and memory ?

— McGuire

Bond

| am Bond , James Bond — tired

am
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Properties of sequences

o Data inside a sequence are non identically, independently distributed (IID)
°The next “word” depends on the previous “words”
°|ldeally on all of them

o We need context, and we need memory!

o Big question: How to model context and memory ?

McGuire
Bond

| am Bond , James Bond tired

am
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One-hot vectors

o A vector with all zeros except for the active dimension
o012 words in a sequence = 12 One-hot vectors

o After the one-hot vectors apply an embedding
°Word2Vec, GloVE

Vocabulary One-hot vectors
I | 0

am

Bond

James

tired

am
Bond
James

McGuire
!

O 0O o O o oo -
O OO O o O K

O o o o o~ O O
O O o O, OO O
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Why not indices instead of one-hot vectors?

One-hot representation OR? Index representation

| am James McGuire | am James McGuire
0

1 O O xnIn j— 1

0 1 0 O

0 0 0 O X'am" =

O O 1 O xll n — 4

Xt=1,2,34 = 0 0 0 0 James
X'McGuire" =
0 0 0 O
0 0 0o 1
| 0 0 o 0 |
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Why not indices instead of one-hot vectors?

One-hot representation OR? Index representation
| am James McGuire | am James McGuire
0
1 O O xnIn —_ 1
0 1 0 0 _
O O O O x"am" — 2
O O 1 O xn n = 4
Xt=1,2,34 = 0 0 0 0 James
X'McGuire” = 7
0 0 0 0
0 0 0 1
. 0 o o0 0 _
? o) = V2 o (Xgm, X re) = (7—2)2=5
Z(xamr xMcQulre) - 2\tamy A*McQuire
= *
— 2 _
Co(X1, Xam) = V2 (X Xgm) = (2 -1 =1

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES RECURRENT NEURAL NETWORKS - 17



Recurrent Neural
Networks

Backprop through
time
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Memory

o Memory is a mechanism that learns a representation of the past

o At timestep t project all previous information 1, ..., t onto a latent space ¢;
°Memory controlled by a neural network hg with shared parameters 6

oThen, at timestep t + 1 re-use the parameters 8 and the previous ¢;
Ct41 = ho(Xt41,Ct)

Ces1 = ho(Xe41, hg(xe, hg(Xi—q, ... hg(X1,Cp))))
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A graphical representation of memory

o In the simplest case, what are the Inputs/Outputs of our system
o Sequence inputs =2 we model them with parameters U
o Sequence outputs = we model them with parameters V

o Memory I/O = we model it with parameters W

Memory mechanism y, Output

Output parameters V

Memory parameters W

Memory embedding vector
Input parameters U

Xt nput
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A graphical representation of memory

o In the simplest case, what are the Inputs/Outputs of our system
o Sequence inputs =2 we model them with parameters U
o Sequence outputs = we model them with parameters V

o Memory I/O = we model it with parameters W

¥ Output Yt+1 Yi+2 Yt+n

Output parameters V V
Memory parameters W W
(XX
Input parameters U U
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Folding the memory

Unrolled/Unfolded Network Folded Network

Yt YVit+1 Vt+2

Xt Xt+1 Xt+2 Xt
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Recurrent Neural Networks - RNNSs

o Basically, two equations
¢, = tanh(U x; + Wci_q)
y; = softmax(V c¢;)

o And a loss function

L= z Li(Ye,Ve)

t
= Zyé‘ logy;
t

assuming the cross-entropy loss function
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RNNs vs MLPs

o Is there a big difference?
o Instead of layers = Steps
o Outputs at every step = MLP outputs in every layer possible

o Main difference: Instead of layer-specific parameters = Layer-shared
parameters Vs Vs

Final output

v
“Layer/Step” 1 | “Layer/Step”2 | “Layer/Step”3
wl 8 lw,| & |w.| § y
X X —& \(i 2: \('<B 3: \SD ———>
= < =
— (\] w
3-gram Unrolled Recurrent Network 3-layer Neural Network
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Hmm, layers share parameters 7?17

o How is the training done? Does Backprop remain the same?
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Hmm, layers share parameters 7?17

o How is the training done? Does Backprop remain the same?

o Basically, chain rule
°S0, again the same concept

o Yet, a bit more tricky this time, as the gradients survive over time
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Backpropagation through time

¢, = tanh(U x; + Wci_q)
y: = softmax(V c¢;)

L= zyif logy;
t

o Let’s say we focus on the third timestep loss
0L

=
0L

w_
U
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Backpropagation through time:0.L;/dV

o Expanding the chain rule

% - 0L, a}’tk aCItl _
aV aytk aqt*l GVU
==V — Y )OC;

Yt YVt+1 Vt+2

o All terms depend only on the current
timestep ¢

o Then, we should sum up all the
gradients for all time steps

0L . a[/t Xt Xt+1 Xt+2

o Liov
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Backpropagation through time: d.L;/0W

o Expanding with the chain rule

c; = tanh(U x; + Wci_1)
oL, or.dy,dc, y: = softmax(V c¢;)
oW 0y, dc, OW

. dc
o However, ¢, itself depends on ¢,_; > —

v dependsalsoon ¢;_q =2
The current dependency of ¢; to W isrecurrent
> And continuing till we reach c_; = [0]

Yt+1

Yt+2

o So, inthe end we have

0L,  ~o 9L, By, dc, dc
ow £ 0y, Oc, dcy OW

. dcy . . . .
o The gradlenta—zt itself is subject to the chain rule
k

dc;

t
dcy O0cpq  OCpy1

Xt Xt+1
6Cj
dc, 0Ci_10Ci_,  Ocy

Xt+2
j=k+1 9¢j-1

o Then, we should sum up all the gradients for all time steps
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Backpropagation through time: d.£L;/0U

c; = tanh(U x; + Wci_1)

o For parameter matrix U a similar process Y, = softmax(V ¢,)

0L, ~o 0L, Dy, dc, dcy

oW ) k=0 ayt act aCk ow " Yet1 Ye+2

Xt Xt+1 Xt+2
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Trading off Weight Update Frequency & Gradient Accuracy

o At time t we use current weights w; to ¢, = tanh(U x; + Wee—y)
compute states ¢; and outputs y; ye = softmax(V c;)

o Then, we use the states and outputs to
backprop and get wy, ¢

o Then, at t + 1 we use w;, 1 and the current Ve Vern Verz
state ¢; to Y41 and Cpyq

o Then we update the weights again with

Yt+1-
°The problem isgftﬂ was computed with ¢; in mind,
which in turns depends on the old weights w¢, not
the current ones wg, 1. So, the new gradients are
only an estimate

> Getting worse and worse, the more we backprop
through time

Xt Xt+1 Xt+2
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Potential solutions

o Do fewer updates
°That might slow down training

o We can also make sure we do not backprop through more steps than our
frequency of updates
°But then we do not compute the full gradients
°Bias again = not really gaining much
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Vanishing gradients . . :
Exp|odm§§radiems Decay of information through time

Truncated backprop

Timet=0 Timet=] Timet=2 Timet=3 Timet=4Y Timet=5 Timet=6.. Timet =100

@ @ O O @ O C
@) O © O @) O O
o —> ® — ® —> ® —_ O — — & | ==
@ L e ® O ®
S Y N T S S S
O O @ O O O
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An alternative formulation of an RNN

o Easier for mathematical analysis, and doesn’t change the mechanics of the
recurrent neural network

cg =W -tanh(c;—1) + U -x + b
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What is the problem

ac;

o As we just saw, the gradient itself is subject to the chain rule

aCk

t

dcy O0cpq OCryq 1—[ dc;
dc, 0ci_q0ci_y  Ocp dcj_q

dc;

j=k+1
o Product of ever expanding Jacobians
oEver expanding because we multiply more and more for longer dependencies
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Let’s look again the gradients

o Minimize the total loss over all time steps
arg m@inz Li(crp)
t
0L,
ow

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES RECURRENT NEURAL NETWORKS - 36




Let’s look again the gradients

o Minimize the total loss over all time steps

arg mln 2 Li(cro)

0Lt OLt dc; dc,
ow dc; dc, OW
0Ldc, 0L dc, Ocey  Ocp _ 0L
dc,dc, 0c, Ociq Oc, ~ Oc, dc;
\ ~ J \ N J
t KT - short-terwn factors £ 3> T - long-term factors
o RNN gradients expanding product of aict
t—-1

o Withn < 1 long-term factors = 0 exponentially fast

Pascanu, Mikolov, Bengio, On the difficulty of training recurrent neural networks, JMLR 2013
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http://proceedings.mlr.press/v28/pascanu13.pdf

Some cases

aCt aCt

>1,e.g. = 1.5

dCt—1

o Let’s assume we have 10 time steps and =
t—-1

0L
o What would happen to the total a_m;?
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Some cases

> 1, e.g. 9% _ 15

0Ct—1

aCt

o Let’s assume we have 100 time steps and "
t—-1

0L
o What would happen to the total a—v;?

9L 9¢ 1,510 = 4.06 - 107

dce 0cy
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Some cases

<1 eg %% _ 05

0Ct—1

Oct

o Let’s assume now that
dCt—1

0L
o What would happen to the total a_m;?
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Some cases

5 Let’s assume now that —<t < 1, e.g. %% _ 05
dCt—1 0Ct—1
o What would happen to the total %?
dL dc; 10 s
«x 0.5 =9.7-10
dcy dc,

o Do you think our optimizers like these kind of gradients?
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Some cases

5 Let’s assume now that —<t < 1, e.g. %% _ 05
dCt—1 0Ct—1
o What would happen to the total %?
dL dc; 10 s
«x 0.5 =9.7-10
dcy dc,

o Do you think our optimizers like these kind of gradients?
o Too large =2 unstable training, oscillations, divergence

o Too small = very slow training, has it converged?
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Vanishing & Exploding Gradients

o In recurrent networks, and in very deep networks in general (an RNN is not very
different from an MLP), gradients are much affected by depth

0L 0L aCT aCT_l aCt+1 aCt+1 0L . . .

— = : : N 1 > — « 1 = Vanishing gradien
dcg dct O0Ct—1 OCT—» dcc, and dce < ow < anishing & adient
0L 0L aCT aCT_l aCt+1 aCt+1 0L . .
—= - - I 1 =>—>1>E

9c, — 9or dor o1, oc, and ac, > v > xploding gradient
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Vanishing gradients & long memory

o Vanishing gradients are particularly a problem for long sequences
o Why?
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Vanishing gradients & long memory

o Vanishing gradients are particularly a problem for long sequences
o Why?

o Exponential decay

612_1—[ dcy _HW 3 tanh
act_ ack_]__ al (Ck—l)

t=k=t1 tzk=t
o The further back we look (long-term dependencies), the smaller the
weights automatically become
cexponentially smaller weights
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Why are vanishing gradients bad?

o The weight changes of earlier time .
steps become exponentially smaller 0k

ow
o Bad, even if we train the model
exponentially longer

o The weights will quickly learn to
“model” short-term transitions and
ignore long-term transitions

o At best, even after longer training, 0Ls
they will try “fine-tune” the whatever & oW

bad “modelling” of long-term \‘% 9Ls
transitions _| &V
o But, as the short-term transitions are

inherently more prevalent, they will 0L _ 0Ly , 0L, 0L3 | 0Ly , Ofs
dominate the learning and gradients ow 9w oW 9w oW = 9w

A

& 2
w

QD
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Quick fix for exploding gradients: Rescaling!

. . oL
o First, get the gradient g « PR

o Check if the norm is larger than a threshold 6,

olf itis, rescale it to have same direction and threshold norm

0

o Simple, but works! ' g
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Can we rescale gradients also for vanishing gradients?

o No!
o The nature of the problem is different
o Exploding gradients =2 you might have bouncing and unstable optimization

o Vanishing gradients =2 you simply do not have a gradient to begin with
cRescaling of what exactly?

o |ln any case, even with re-scaling we would still focus on the short-term
gradients
cLong-term dependencies would still be ignored
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Biased gradients?

o Backpropagating all the way till infinity is unrealistic
> We would backprop forever (or simply it would be computationally very expensive)
°And in case, the gradients would be inaccurate because of intermediate updates

o What about truncating backprop to the last K steps
0L (t=k

~ m _
1
G+ ow lt=0

o Unfortunately, this leads to biased gradients
0L ‘t=°°

—_— — =+ 21
Jt+1 aw le—o Jt+1

o Other algorithms exist but they are not as successful
> We will visit them later

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES RECURRENT NEURAL NETWORKS - 49



LSTM and variants
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How to fix the vanishing gradients?

o Error signal over time must have not too large, not too small norm

o Let’s have a look at the loss function
t
0Ly dL, dy; dc; dc;

oW L. 0y, dc, dc, OW
7=1
dc; B dcy
ey t2k2rack_1

o How to make the product roughly the same no matter the length?
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How to fix the vanishing gradients?

o Error signal over time must have not too large, not too small norm

o Let’s have a look at the loss function
t
0Ly dL, dy; dc; dc;

oW L. 0y, dc, dc, OW
7=1
dc; B dcy
ey tZkZTaCk_l

o How to make the product roughly the same no matter the length?

o Use the identity function with gradient of 1
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Main idea of LSTMs

o Over time the state change is ¢;1q = ¢ + ACiy 1
o This constant over-writing over long time steps leads to chaotic behavior

o Input weight conflict
°Are all inputs important enough to write them down?

o Output conflict
°Are all outputs important enough to be read?

o Forget conflict
°|s all information important enough to be remembered over time?
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LSTMs

o RNNs
c. =W -tanh(¢;—q) + U -x; + b
o LSTMs -
[ = a(xtU(i) + 'mt_lw(i)) O *
f =0, UD +m_,wh) A 0 aﬁ
0= a(xtU(O) + mt_lw(")) t t - t
C; = tanh(xtU(g) + mt—lw(g)) o || o |[tanh|| @ ‘
G =C1Of+OI me__1 m,
m; = tanh(c;) © o o Output
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LSTMSs: A marking difference

Additivity leads to strong gradients
O RNNs Bounded by sigmoidal f

c. =W -tanh(c;—1) + U -x; + b
tanh
ft I Ot

o LSTMs
i —_ O-(xtU(l) + mt_lw(l))
f — O-(xtU(f) + mt_]_W(

0 = o(x;U© +m,_W©)

¢ = tanh(x, U924+ m,_, W) o 1o ][enbl [ @ ‘

Cc=C1 Of+GOI me 1 me

m; = tanh(c;) © o Output
Input

o The previous state ¢;_1 and the next state ¢; *

are connected by addition
Nice tutorial: http://colah.qgithub.io/posts/2015-08-Understanding-LSTMs/

s
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http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Cell state

Cd C;

Cell state line
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LSTM nonlinearities

Co_ c
o t—1 , 5
0)
ft Lt O¢
0]
C.
tanh o O |[|tanh|| O
mt_l A :t
tanh
Xt

oo € (0,1): control gate — something like a switch

otanh € (—1, 1): recurrent nonlinearity
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LSTM Step by Step #1

f — O'(xtU(f) + mt_1W(f)) |

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES RECURRENT NEURAL NETWORKS - 58



LSTM Step by Step #2

I = O-(xtU(l) + mt_]_W(i))

¢; = tanh(x, U9 + m,_ W) g

o | [tanh

o Decide what new information is relevant from the new input and should
be added to the new memory
> Modulate the input i;
> Generate candidate memories ¢;
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LSTM Step by Step #3

fi It

N

Gt =C1Of+C O

o Compute and update the current cell state ¢;
°Depends on the previous cell state
°What we decide to forget
°What inputs we allow
°The candidate memories
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LSTM Step by Step #4

0 =0(x U@ +m;_ W) %,

m, = tanh(c;) © o ! "

o Modulate the output

°Does the new cell state relevant? = Sigmoid 1
°|f not = Sigmoid O

o Generate the new memory
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Unrolling the LSTMs

o Just the same like for RNNs

o The engine is a bit different (more complicated)
°Because of their gates LSTMs capture long and short term dependencies

D)
D
X
D
Q)
D

Lo |[o |ttanhf[ o | Lo [ o |ftanhf[ o |
l [ ] | l [ ] |
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LSTM variants

o LSTM with peephole connections

o Gates have access also to the previous cell states ¢_(t-1) (not only
memories)

o Bi-directional recurrent networks
o Gated Recurrent Units (GRU)

o Phased LSTMs

o Skip LSTMs

o And many more ...
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Encoder-Decoder
Architectures

Moropa cerogHa xopowasa <EOS>

f f f f

LSTM > LSTM LSTM LSTM |—»

I I ] ] I I f f ]

Today the weather is good  <EOS>

LSTM

A 4

LSTM

A 4

LSTM

A 4

LSTM » LSTM

A 4

\ 4

\ 4

[loroga cerogHA  xopollas

Encoder Decoder

UVA DEEP LEARNING COURSE
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Machine translation

o The phrase in the source language is one sequence
o “Today the weather is good”

o It is captured by an Encoder LSTM

o The phrase in the target language is also a sequence
°“INoroaa ceroaHAa xopowaa”

o It is captured by a Decoder LSTM

Moropa cerogHa xopowasa <EOS>

f f f f

LSTM » LSTM » LSTM » LSTM » LSTM » LSTM > LSTM > LSTM » LSTM [—»
Today the weather is good  <EOS> Moroga cerogHa  xopoluas
Encoder Decoder
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Image captioning

o Similar to image translation

o The only difference is that the Encoder LSTM is an image ConvNet
VGG, ResNet, ...

o Keep decoder the same

Today the weather s good <EOS>
t t t t { t

Convnet LSTM [—» LSTM [ LSTM [ LsTM | LsTM > LsT™
1 f 1 f 1

Today the weather s good
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Image captioning demo

Click to go to the video in Youtube

a man in a suit and tie standing in front of a building

’7/

NeuralTalk and Walk, recognition, text description of the image while walking
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https://www.youtube.com/watch?v=8BFzu9m52sc

o Sequential data

o Recurrent Neural Networks

o Backpropagation through time
summary o Exploding and vanishing gradients
o LSTMs and variants

o Encoder-Decoder Architectures
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