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Lecture overview

o Gentle intro to Bayesian Modelling and Variational Inference
o Restricted Boltzmann Machines

o Deep Boltzmann Machines

o Deep Belief Network

o Contrastive Divergence

o Variational Autoencoders

o Normalizing Flows

s
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Explicit density models

o Plug in the model density function to likelihood

o Then maximize the likelihood

Direct

Maximum Likelihood
\ / GAN
7\

Explicit density Wi‘c density

N\ O

k hai
Tractable density  Approximate density \Mar ov Chain

“Fully visible belief nets \ GSN
_NADE _ / \
_MADE Variational | | Markov Chg}m

-PixelRNN Variational autoencoder Boltzmann machine
-Change of variables

Problems

o Design complex enough model
that meets data complexity

o At the same time, make sure model
is computationally tractable

models (nonlinear ICA)

o More details in the next lecture
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Deep Belief Deep Boltzmann
Network Machine

Bayesian Modelling
Variational Inference




How to define a generative model? .
e

o We can define an explicit density function over all possiblelr tloésj:
W .between the input variables x,

p(x) = l_[wc (xe)

L\) <>< ><7) MXI (’&

o Quite inefficient = think of all p055|ble relations (notJust palrW|se)
between 256 X 256 = 65K input variables

o Solution: Define an energy function to model the relations between the
inputs variables
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Restricted Boltzmann Machines O J /«a@o —

CooH a\@/-} ?

o Boltzmann (or Gibbs) distribution deflned over a free ener \gfurfc?tigfwbé(x)
p(x) —@eXp( —E(x)) — > |

o Z is the normalization factor that makes sure fxp(x) dx =1
>\ery expensive to compute = if x = {0, 1} computing Z requires 24 computations
=

o Better restrict the model furthe

s
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Why Boltzmann?

o In statistical mechanics and mathematics, a Boltzmann distribution (also
called Gibbs distribution) is a probability distribution, probability measure,
or frequency distribution of particles in a system over various possible
states. The distribution is expressed in the form

F(state) < exp(— T

o E is the state energy, k is the Boltzmann constant, T is the thermodynamic
temperature

https://en.wikipedia.org/wiki/Boltzmmann distribution

s
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Restricted Boltzmann Machines

oFE(x) =[—x"Wh —b"x —c'h

oThe xT dels correlations between x and the latent activations via the
parameter matrix W

oThe bTx, c"h model the priors

o Restricted Boltzmann Machines (RBM) assume X, h to b
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Restricted Boltzmann Machines

oE(x) = blx —c'h, 6 ={W,b,c} o

o The free energy function F(x) = —log )., exp(—E(x, h))
defines a bipartite graph
with undirected connections
oInformation flows forward and backward

l

5—

S -k
ﬁ
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Restricted Boltzmann Machines

o The hidden units h; are independent to each other
conditioned on the visible units

p(hln) = | [ p(hlx.6)
Ji -

o The hidden units x;-are independent to each other
conditioned on the visible units

plm = | [pCuln 0)

s
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Training RBMs

o The conditional probabili ies/afeﬂefined a&%gmoids
p(hy|x, 0) = U@Jx +by)
p(x;|h, 0) = a(Wik+(c;)

£(0) = 1) J “EW/ %
n
o Let’s take the gradients

dlogp(x,|0) aF(xA dlogZ

9 Plin o< 8E® o)
= = plhlxy, 0) £ p(x hl6)
00 A 00
h Eh

Hidden unit (features)

o Maximize log-likelihoo
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Training RBMs

o

o Let’s take the gradients
dlogp(x,|0) 6F(xn) dlogZ L///

006 Ea 006
a _|h, 8 aE h|6
= — E p(hx,, 6) (Hx ' ) 4 E p(%, h (x 9)

o Easy because we just substitute in the deflmtlons the x,, and sum over h

o Hard because you need to sum over both X, h which can be huge
°|t requires approximate inference, e.qg., MCMC

s
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Training RBMs with Contrastive Divergence

o Approximate the gradient with Contrastive Divergence

Ob ions Reconstructions
xi ~ P(x|h)
Hinton, Training Products o rts by Minimizing Contrastive Divergence, Neural Computation, 2002

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES EXPLICIT GENERATIVE MODELS - 13



Deep Belief Network

o RBMs are just one layer ) h.

o Use RBM as a building block

INER/
()4
¢

o Stack multiple RBMs one on top of the other
p(x, hy, hy) = p(lhy) - p(hy |hz)

o Deep Belief Networks (DBN) are directed models -
°The layers are densely connected and have a single forward flow X

°This is because the RBN is directional, p(x;|h,8) = o( Ci),
namely the input argument has only variable only from below
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Deep Boltzmann Machines

o Stacking layers again, but now with connection
from the above and from the below layers h.

o Since it’s a Boltzmann,machine, we need an /
L

/

energy functior i ,
E(x,hy, hy160) = x"Wihy + hiW,h, + hy W3hs h.

p(h¥|hy, hs) = a(Y W/ R+ W)
j -~ z \ h,

——

(—Z—‘((

s
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Deep Boltzmann Machines

o Schematically similar to Deep Belief Networks

— . h;
eep Boltzmann Machines (DBM) are
~undirected models
°Belong to the Markov Random Field family h
o So, two types of relationships: bottom-up and up-

bottom
p(hs|hs, hs) = () W/*R] + > WiRE) b
i l

s
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Training Deep Boltzmann Machines

o Computing gradients is intractable

o Instead, variational methods (mean-field) or sampling methods are used

Ggan o W
e

S

(
A
A

/

\

AX
<

AN
\

s
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Bayesian Modelling
Variational Inference

normal gamma nomal gamma
\ \\ | /
A
K 0 Z; Y
nomal nomal
N\ / K, I
Y gamma
+




Bayesian Terminology

o Observed variables x

=

o Latent variable

°Both unobservable medelparameters w and
unobservable model activations z—

o0 = {w, z}
o Joint probability density function (pdf): p(x, 8)
o Marginal pdf(p(x))= J, p(x, 6) do
o Prior pdf marglnal over input; p(H) = J p(x,0) dx

°Usually(a user definedpgf

/ '\
)
/ L i "\

7 normal

o Posterior pdf: p(8]x) -
o Likelihood pdf: pix|0) i
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Bayesian Terminology

o Posterior p E 2 M
(4 6 |JJCC :) < Conditional probability G\ﬁ C})
3 W52 ) = wel) 3

< Bayes Rule

p(x
(xlg) p(0) « Marginal probability

’p@(@) < p(x) is constant

x,0") do’

L/ xpdl®)p®) | _——

o Posterior Predlctlve pd%
POt ) = fe DG |6) P(O1)
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Bayesian Terminology

o Conjugate priors
cwhen posterior and prior belong to the same =
family, so the joint pdf is easy to compute

Point estimate of your
neural network weight

o Point estimate approximations of
latent variables
°instead of computing a distribution over all
possible values for the variable, compute one

point only, e.g. the most likely (maximum
likelihood or max a posteriori estimate)

0" = argg maxp(x|0)p(6) (MAP)
0" = argg maxp(x|0) (MTE)

> Quite good when the posterior distribution is
peaky (low variance)
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Bayesian Modelling

o Estimate the posterior density p(8|x) for your training data x

N
o To do so, need to define the pric@ and likelihood ‘) distributions

o Once the p(08]x) density is estimated, Bayesian Inference is possible
°p(B]x) is a (dgnsity) function, not just a single number (point estimate)

o But how to estimate the posterior density?
>Markov Chain Monte Carlo (MCMC) = Simulation-like estimation
°Variational Inference = Turn estimation to optimization
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Variational Inference

o Estimating the true posterior p(@]x)is not always possible
cespecially for complicated modelsTike ﬁeural networks

°q(@|¢) is the approximate posterior —— —
°Note that the approximate posterior does not depend on the observable P(CQ(/C>
variables x

o We approximate by minimizing the reverse KL-djvergence w.rt. @
@’ =§a£gm;12 KL(q(@lg )

o Turn inference into optimization
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Variational Inference (graphically)

\

oo i % RN L/ Y
' SRl | palx) =5 % e
) a2y by

=

Underestimating variance. Why?

(M) Lo L peeler €0 et
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Variational Inference (graphically)

p(z|x) |

" KL(q(z:v*) || p(z] %))

Underestimating variance. Why?
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Variational Inference (graphically)

p(z|x) |

" KL(q(z:v*) || p(z] %))

Underestimating variance. Why?

How to overestimate variance? /
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Variational Inference (graphically)

p(z|x) |

" KL(q(z:v*) || p(z] %))

Underestimating variance. Why?

How to overestimate variance? Forward KL /
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Mean-Field Approximation and CAVI Optimization

o To make the optimization of the VI easier, one can assume the latent
variables are independent of each other

a0l9) = | | 4,610
—

o The optimization is often done with CAV|
o Coordinate-Ascent Variational Inference
°|nitially set ¢ randomly

oFor each j in turn you set qj(Hj = Eg_, llogp(0|x)]
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Variational Inference - Evidence Lower Bound (ELBO)

o Given latent variables @ and the

approximate posterior Eq, 0 llogp(x,0)] — % 59)[108 q,(6)]

~ — Ellogp(r.0)] + 1
q,(0) = q(0]p) _ Eﬁﬁ(g)e[@o(%?(x )]

o The log marginal is

logp(x) = logfp(x 0) do
q(p( )

= Eq, ) llogp(x|0)] — E; o) llogp(6)]

— logjgp(x ) (9) db + [Eq<p(9) :_log Chp(g)]
P(x, 0) = Eq, ) logp(x|6)] — KL(q,(0)]|[p(6
= logEq, ) = ELBO
v q (8) 9,(p(X)
<E [logpéux' 2
— Chp(g) q(p (0) |

s
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Variational Inference - Evidence Lower Bound (ELBO) \%W

N
o Given latent variables ¢ and the - Eq(9,q7[&3@(6ﬁyjzﬁ (9) A 7(9/4?5]
approximate posterior W

4y (0) = q(0]¢p)
o The log marginal is

b@@@c\ Qx)@/?&%\”a}

AU\/\U\O’LU\(S 2{\9*
\V\ _\og 0-06/ PGQ8>
\0 J\&Z\\W 1Y

G*‘Qx : _\_4% E—
— by 9(2) )\
JQA/\,CQM\\\

637 < EO\@ ‘Gt/U%/ 753

T
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ELBO and the marginal

o It is easy to see that the ELBO is directly related to the marginal
EBOG’([)(X) =
;:]E\’(Q) :__ogp(x, 0)] — [Eq(p(g) [log qdq (9)]
= Eq,(6)[logp(012)] + Eq,, () log p ()] — Eq,(6)[l0g 94, (8))]
= Eq, o) llogp(x)] — KL(q,(0)[|p(0]x))

= logp(x) — KL(q,(6)||p(0]x)) & log p(x) does not depend on q,,(6)
57—\ Eq,0)[1]1=1

ELBOg,, (x) 4 KL(q,(8)|p(6]x))

s
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ELBO and the marginal

o It is easy to see that the ELBO is directly related to the marginal
ELBO@)cp(X) =

s
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ELBO interpretations - .
L K L
log(2) = BLBO () + KL(qgo(e)up(mx))T

-likelihood is constant, as it does not depends on any parameter

o Also, both ELBOg (,(x) > 0 and KL(q,(8)]|p(8]x)) > 0

-—
S _

—

1. The higher the Variational Lower Bound ELBOg (,(x), the smaller the

difference between the approximate posterior q,, (@) and the true
posterior p(6|x) = better latent representation

2. The Variational Lower Bound ELBOg (%) approaches the log-likelihood
— better density mod
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Amortized Inference

o The variational distributior% does not depend directly on data
°Only indirectly, via minimizing its distance to the true posterior KL(q(8|¢@)||p(8]x))

o So, with q(8|@) we have a major optimization problem, as the
approximate posterior must approximate the whole dataset x =

|x1, X5, ..., Xy ] jOintly

o As this is obviously quite complex one can amortize the optimization on
individual data points by se

o Predict model parameters 8 using a @-parameterized model of the input x

o Use it for parameters that depend on data, such as the latent activations

s
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Amortized Inference (Intuitively)

o Originally, Variational Inference assumed that q(8|¢@) describes the
approximate posterior of the dataset as a whole
°Think of 8 not as the latent activations z, but only the latent r variables w

q@\@ k R0 |
-t

s
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Variational Autoencoders

o Let’s rewrite the ELBO a bit more explicitly
ELBOg (x) = Eq_ ey [logp(x|6)] — KL(q, (8)[p(B);
=\1Eq¢<z|x> [log g (|21~ KL(q,, (2]2)[[pa(Z

o Instead of p(x]0) we have py (x]Z) to indicate that the model for the

peskesor density has weig eterized by 8 and latent model
activations parameterized by 2

amely we put a A-parameterized prior
ersZ and not the model weights

o Instead of q(8]¢@) we ha to indicate that the model

approximates the posteriordensity of the latent activations, and the
model weights are parameterized by ¢

o Instead of p(0) we havg
only on the latent active

s
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Variational Autoencoders

o
MW) — IIE':qqo(z|x) [log pe (x[2)] —
q(p(le)”p?\(Z

o What if we el'the densities pg (x|z) and g, (z|x) as neural veClz) |

networks? Decoder/Generator
o The approximate posterior looks like a standard CovnNet (or MLP), network

which receives an image input x and returns a feature map/latent \
variable z @

> Also known as encoder or inference network

o The likelihood term F?_g (x|z) looks like an inverted ConvNet
(deconvolutions), which given a latent feature map z reconstructs the

Input x

> Also known as decoder or generator network, because it recognizes the input given
the latent variable

o A difference from a standardautoencederiswe now have an-opinio
of what the distribution of the Tatents Z should look like, w
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Training Variational Autoencoders

o Maximize the Evidence Lower Bound (ELBO)
°Or minimize the negative ELBO

L(Q, 90) — II-::qcp(zpc) [108 Peo (XlZ)] T KL(Qcp(le)”p?\(Z))
o How to we optimize the ELBO? |

s
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Training Variational Autoencoders

\/ U
o Maximize the Evidence Lower Bound (ELBO)
°Or minimize the negative ELBO

L6, 9) =Ey (zx)[logpe(x1Z)] — KL(q, (le)llpx(Z))

B qe(2]X)
jqﬂ) loipjfiﬂz) dz qu)(zlx) log o (2 dz

o Forward propagation = compute the two terms

o The first term is an integral (expectation) that we cannot solve analytically.
So, we need to sample from the pdf instead

°When pg(x|z) contains even a few nonlinearities, like in a neural network, the integral
is hard to compute analytically
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Complex integrals
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Training Variational Autoencoders

o Maximize the Evidence Lower Bound (ELBO)
°Or minimize the negative ELBO

o Forward propagation = compute the two term

o The first term is an integral (expectation) that we cannot solve analytically. So,
we need to sample from the pdf instead

°When pg(x|z) contains even a few nonlinearities, like in a neural network, the integral is hard
to compute analytically

o The second term is the KL divergence between two distributions that we know

s
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Typical VAE

o We set the prior py o-be the unit Gaussian

o We set the likelihood to Bernoulli for binary data

p(X|Z)~Bernoulli(n

o We set g, (Z]x) to be a neural network (MLP, ConvNet),
which maps an input X to the Gaussian distribution,
specifically it's mean and variance

"Uz, 07 ~ Chp(zlx)
°The neural network has two outputs, one is the mean u, and the
other the g,., which corresponds to the covariance of the Gaussian

o We set to be an inverse neural network, which
map o the Bernoulli distribution if our outputs binary
(e.g. Binary MINIST)

Uy —
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Forward propagation in VAE

o Sample z from the approximate posterior density z~q,, (Z]|x)

°As q, is a neural network that outputs values from a specific and known parametric pdf,
e.g. a Gaussian, sampling from it is rather easy

°Often even a single draw is enough

o Second, compute the log pg (x|Z2)

°As pg is a a neural network that outputs values from a specific and known parametric pdf,
e.g. a Bernoulli for white/black pixels, computing the log-prob is easy

o Computing the ELBO is rather straightforward in the standard case

o How should we optimize the ELBO?
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Forward propagation in VAE

o Sample z from the approximate posterior density z~q,, (Z]|x)

°As q, is a neural network that outputs values from a specific and known parametric pdf,
e.g. a Gaussian, sampling from it is rather easy

°Often even a single draw is enough

o Second, compute the log pg (x|Z2)

°As pg is a a neural network that outputs values from a specific and known parametric pdf,
e.g. a Bernoulli for white/black pixels, computing the log-prob is easy

o Computing the ELBO is rather straightforward in the standard case

o How should we optimize the ELBO? Backpropagation?
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Backward propagation in VAE

o Backpropagation =2 compute the gradientso
£(6,9) = Ex~q, 210108 P (x12)] = KL(y (Z11 IpA(2)

CL — ~qyp (Z|x @logpe(x|z)

°The expecta ion and sampling in IEZ~q (z|x)does not depend on 6, so no problem!

°Also, the KL does not depend on 8, so no gradient from over there!

oV, L =
e

s
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Backward propagation in VAE

o Backpropagation = compute the gradients of
L, ¢) = E;q,z10logpe(x]2)] — KL(q4, (Z]|x)||pa(Z))
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Backward propagation in VAE

o Backpropagation = compute the gradients of
L6, 9) = E;q,z10logpe(x|2)] — KL(q, (Z]|x)||pa(Z))

oVeL = II5:z~qgo(Z|x) [VH log pg (x|z)]
°The expectation and sampling in IEZ~q(p(Z|x)does not depend on 8, so no problem!
°Also, the KL does not depend on 8, so no gradient from over there!

VoL = Ty |Eymgy a1 10 26 (2121 | = T [KL (g (Z10) 192 (2)) |

o Problem?

s
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Backward propagation in VAE

o Backpropagation = compute the gradients of
L6, 9) = E;q,z10logpe(x|2)] — KL(q, (Z]|x)||pa(Z))

oVeL = II5:z~qgo(Z|x) [\79 log pe (X|Z)]
°The expectation and sampling in IEZ~q(p(Z|x)does not depend on 8, so no problem!
°Also, the KL does not depend on 8, so no gradient from over there!

VoL = Ty |Eymgy a1 10 26 (2121 | = T [KL (g (Z10) 192 (2)) |

o Problem? Sampling z~q<p(Z|x) is not differentiable = no gradients
o No gradients = No backprop = No training! = Solution?

s
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Solution: REINFORCE?

0 So, our latent variable Z is a Gaussian (in the standard VAE) represented by
the mean and variance u,, 6z, which are the output of a neural net

0 So, we can train by sampling randomly from that Gaussian
Z~N(iz, 07)
o Once we have that z, however, it’s a fixed value (not a function), so we
cannot backprop

o We could use, however, the REINFORCE algorithm to compute an
approximation to the gradient
>High-variance gradients =2 slow and not very effective learning

/M

s
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Solution: Reparameterization trick 4/\ \ @)WZ
S

o Remember, we have a Gaussian out

)
o For certain pdfs, including the Gaussian, we can rewrite their om variable z
as deterministic transformations of a simpler random variable &
o For the Gaussian specifically, the followi e equivalent

z~N(uz,07) <
d Uy, o, are determini

N function

u‘/:‘ I
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Solution: Reparameterization trick

o Instead of sampling from ve sample from e~N (0, 1) and
then we compute z

o Sampling directly from z~N(u,, 0,) leads to high-variance estimates

o Sampling directly from e~N(0,1) leads to low-variance estimates
°Why low variance? Exercise for the interested reader

o Remember: since we are sampling for z, we are also sampling gradients

o More distributions beyond Gaussian possible: Laplace, Student-t, Logistic,
Cauchy, Rayleight, Pareto

High-variance
gradient

Low-variance
gradient
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Check what is random

o Again, the latent variableisz = u, + € - o,

ou inistic functions (via the neural network encoder)
0 € is a random variable, which comes exter
'\

o The z as a result is itself a random variable, because of &

o However, now the randomness is not associated with the neural network
and its parameters that we have to learn
°The randomness instead comes from the external €
°The gradients flow through u, and o,
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Reparameterization Trick (graphically)

Original form Reparameterised form

Backprop l \;/

af/aZ \Z/ —g((DXS)

I

I

I

I

I

I

I

I

I

I

ot/ cp X ~p(e) |

I 1

Pi \J |

I

I

~ Q(Z|¢,X)

: = aL/aC[h
e e e e o e e e e
«_ : Deterministic node [Kingma, 2013]
[Bengio, 2013]
: [Kingma and Welling 2014]
‘ - Random node [Rezende et al 2014]
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VAE Training Pseudocode

Data:
D: Dataset
( : Inference model
pe(X,2): Ive mode
Result:

0, ¢: Learned parameters

(6, ¢) < Initialize parameters

while ot converged do
M/Zl(Random minibat

R andom noise for every d :

Update 6 and ¢ usmg SGD optimizer -
end The ELBO’s gradients

s
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VAE for NLP

i ————

“{ want to talk to you .

“ do n’t want to be with you . ”
1 do n’t want to be with you .

~—she did n’t want to be with him .

he was silent for a long moment .
he was silent for a moment .

it was quiet for a moment .

it was dark and cold .

there was a pause .

it was my turn .

Figure 2.D.2: An application of VAEs to interpolation between pairs of sen-
tences, from [Bowman et al., 2015]. The intermediate sentences are gram-

matically correct, and the topic and syntactic structure are typically locally
consistent.
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VAE for Image Resynthesis

Smile vector:
mean smiling faces -
mean no-smile faces

Latent space arithmetic

Figure 2.D.3: VAEs can be used for image re-synthesis. In this example by
White [2016], an original image (left) is modified in a latent space in the
direction of a smile vector, producing a range of versions of the original, from
smiling to sadness. Notice how changing the image along a single vector in
latent space, modifies the image in many subtle and less-subtle ways in pixel
space.
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VAE for desighing chemical compounds

d

Discrete Structure ~ ENCODER CONTINUOUSMOLECULAR  DECODER ~ Discrete Structure

SMILES  Neural Network REPRESENTATION Neural Network SMILES Mol S
Latent Space Most Probable Decoding -

argmax p(*lz)

Figure 2.D.1: Example application of a VAE in [Gémez-Bombarelli et al.,
2016]: design of new molecules with desired chemical properties. (a) A latent
continuous representation z of molecules is learned on a large dataset of
molecules. (b) This continuous representation enables gradient-based search
of new molecules that maximizes some chosen desired chemical property
given by objective function f(z).
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o https://www.shakirm.com/slides/DeepGenModelsTutorial.pdf
Normalizi Nng Flows https://blog.eviang.com/2018/01/nf1.html

https://arxiv.org/pdf/1505.05770.pdf

o Using simple pdfs, like a Gaussian, for the

approximate posterior limits the o(y)
expressivity of the model

o Better make sure the approximate posterior -_
comes from a class of models that can even 0 y

contain the true posterior

o Use a series of K invertible transformations

fiRSR, f(z)=22+1

X

Changing from the x variable to y using
the transformationy = f(x) = 2x + 1

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES

EXPLICIT GENERATIVE MODELS - 60



o https://www.shakirm.com/slides/DeepGenModelsTutorial.pdf
Normalizi Nng Flows https://blog.eviang.com/2018/01/nf1.html

https://arxiv.org/pdf/1505.05770.pdf

Sampling and Entropy

zg = fr o...0 fao fi(zo)
0

Distribution flows through a sequence of invertible transforms
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Normalizing Flows

Unit Gaussian

Uniform

https://www.shakirm.com/slides/DeepGenModelsTutorial.pdf

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES EXPLICIT GENERATIVE MODELS - 62




Normalizing Flows on Non-Euclidean Manifolds

Normalizing
Flows

Probability Density

[

Figure 1: Left: Construction of a complex density on S™ by first projecting the manifold to R",
transforming the density and projecting it back to S™. Right: Illustration of transformed (S? — R?)
densities corresponding to an uniform density on the sphere. Blue: empirical density (obtained by
Monte Carlo); Red: Analytical density from equation (@); Green: Density computed ignoring the

intrinsic dimensionality of S™. N
1 T
log gk (zx) = log qo(zg) — 5 E log det |J¢ J¢|
=]

Gemici et al., 2016 : ' _
https://www.shakirm.com/slides/DeepGenModelsTutorial.pdf
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Normalizing Flows on Non-Euclidean Manifolds

&
&
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Summary

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES
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o Gentle intro to Bayesian Modelling and
Variational Inference

o Restricted Boltzmann Machines
o Deep Boltzmann Machines

o Deep Belief Network

o Contrastive Divergence

o Variational Autoencoders

o Normalizing Flows



