
UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES                                                                                    EXPLICIT GENERATIVE MODELS - 1

Lecture 9: Explicit Generative Models
Efstratios Gavves
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oGentle intro to Bayesian Modelling and Variational Inference
oRestricted Boltzmann Machines
oDeep Boltzmann Machines
oDeep Belief Network
oContrastive Divergence
oVariational Autoencoders
oNormalizing Flows

Lecture overview
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Explicit density models

oPlug in the model density function to likelihood
oThen maximize the likelihood

Problems
oDesign complex enough model

that meets data complexity
oAt the same time, make sure model

is computationally tractable
oMore details in the next lecture



Bayesian Modelling
Variational Inference
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oWe can define an explicit density function over all possible relations 
𝜓𝑐between the input variables 𝑥𝑐

𝑝 𝑥 =ෑ
𝑐

𝜓𝑐 (𝑥𝑐)

oQuite inefficient Æ think of all possible relations (not just pairwise) 
between 256 × 256 = 65𝐾 input variables

oSolution: Define an energy function to model the relations between the 
inputs variables

How to define a generative model?

o*¥
Udx

, ,k)=w,x , xz
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oBoltzmann (or Gibbs) distribution defined over a free energy function 𝐸(𝑥)

𝑝 𝑥 =
1
𝑍
exp(−𝐸(𝑥))

o𝑍 is the normalization factor that makes sure ׬𝑥 𝑝 𝑥 𝑑𝑥 = 1
◦Very expensive to compute Æ if 𝑥 = 0, 1 computing 𝑍 requires 2𝑑 computations

oBetter restrict the model further to a bottleneck
𝐸 𝑥 = −𝑥𝑇𝑊ℎ − 𝑏𝑇𝑥 − 𝑐𝑇ℎ

Restricted Boltzmann Machines

e.:M÷÷÷
:
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o In statistical mechanics and mathematics, a Boltzmann distribution (also 
called Gibbs distribution) is a probability distribution, probability measure, 
or frequency distribution of particles in a system over various possible 
states. The distribution is expressed in the form

𝐹 𝑠𝑡𝑎𝑡𝑒 ∝ exp(−
𝐸
𝑘𝑇

)

o𝐸 is the state energy, 𝑘 is the Boltzmann constant, 𝑇 is the thermodynamic 
temperature

Why Boltzmann?

https://en.wikipedia.org/wiki/Boltzmann_distribution
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o𝐸 𝑥 = −𝑥𝑇𝑊ℎ − 𝑏𝑇𝑥 − 𝑐𝑇ℎ
oThe 𝑥𝑇𝑊ℎ models correlations between 𝑥 and the latent activations via the 

parameter matrix 𝑊
oThe 𝑏𝑇𝑥, 𝑐𝑇ℎ model the priors
oRestricted Boltzmann Machines (RBM) assume x, ℎ to be binary

Restricted Boltzmann Machines

O.O



UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES                                                                                    EXPLICIT GENERATIVE MODELS - 9

o𝐸 𝑥 = −𝑥𝑇𝑊ℎ − 𝑏𝑇𝑥 − 𝑐𝑇ℎ, 𝜃 = {𝑊, 𝑏, 𝑐}

oThe free energy function 𝐹 𝑥 = − logσℎ exp(−𝐸(𝑥, ℎ))
defines a bipartite graph
with undirected connections
◦ Information flows forward and backward

Restricted Boltzmann Machines

0 ×

wk

£÷- 4
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oThe hidden units ℎ𝑗 are independent to each other
conditioned on the visible units

𝑝 ℎ 𝑥 =ෑ
𝑗

𝑝 ℎ𝑗 𝑥, 𝜃

oThe hidden units 𝑥𝑖 are independent to each other
conditioned on the visible units

𝑝 𝑥 ℎ =ෑ
𝑖

𝑝 𝑥𝑖 ℎ, 𝜃

Restricted Boltzmann Machines

a
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o The conditional probabilities are defined as sigmoids
𝑝 ℎ𝑗 𝑥, 𝜃 = 𝜎 𝑊⋅𝑗𝑥 + 𝑏𝑗
𝑝 𝑥𝑖 ℎ, 𝜃 = 𝜎(𝑊⋅𝑖𝑥 + 𝑐𝑖)

oMaximize log-likelihood

ℒ 𝜃 =
1
Ν
෍
𝑛

log 𝑝(𝑥𝑛|𝜃)

o Let’s take the gradients
𝜕 log 𝑝(𝑥𝑛|𝜃)

𝜕𝜃
= −

𝜕𝐹 𝑥𝑛
𝜕𝜃

−
𝜕 log 𝑍
𝜕𝜃

= −෍
ℎ

𝑝 ℎ 𝑥𝑛, 𝜃
𝜕𝐸 𝑥𝑛|ℎ, 𝜃

𝜕𝜃
+෍

෤𝑥,ℎ

𝑝 ෤𝑥, ℎ 𝜃
𝜕𝐸 ෤𝑥, ℎ|𝜃

𝜕𝜃

Training RBMs

Hidden unit (features)

..8nr#←O_0£fYb}
•
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oLet’s take the gradients
𝜕 log 𝑝(𝑥𝑛|𝜃)

𝜕𝜃
= −

𝜕𝐹 𝑥𝑛
𝜕𝜃

−
𝜕 log 𝑍
𝜕𝜃

= −෍
ℎ

𝑝 ℎ 𝑥𝑛, 𝜃
𝜕𝐸 𝑥𝑛|ℎ, 𝜃

𝜕𝜃
+෍

෤𝑥,ℎ

𝑝 ෤𝑥, ℎ 𝜃
𝜕𝐸 ෤𝑥, ℎ|𝜃

𝜕𝜃

oEasy because we just substitute in the definitions the 𝑥𝑛 and sum over ℎ
oHard because you need to sum over both ෤𝑥, ℎ which can be huge
◦ It requires approximate inference, e.g., MCMC

Training RBMs

ghant

rn
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oApproximate the gradient with Contrastive Divergence
oSpecifically, apply Gibbs sampler for 𝑘 steps and approximate the gradient

𝜕 log 𝑝(𝑥𝑛|𝜃)
𝜕𝜃

= −
𝜕𝐸(𝑥𝑛, ℎ0|𝜃)

𝜕𝜃
−
𝜕𝐸(𝑥𝑘, ℎ𝑘|𝜃)

𝜕𝜃

Training RBMs with Contrastive Divergence

Hinton, Training Products of Experts by Minimizing Contrastive Divergence, Neural Computation, 2002

0µg}
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o RBMs are just one layer

oUse RBM as a building block

o Stack multiple RBMs one on top of the other
𝑝 𝑥, ℎ1, ℎ2 = 𝑝 𝑥|ℎ1 ⋅ 𝑝 ℎ1|ℎ2

oDeep Belief Networks (DBN) are directed models
◦The layers are densely connected and have a single forward flow
◦This is because the RBN is directional, 𝑝 𝑥𝑖 ℎ, 𝜃 = 𝜎(𝑊⋅𝑖𝑥 + 𝑐𝑖), 

namely the input argument has only variable only from below

Deep Belief Network

:
O . 60

.

€0
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oStacking layers again, but now with connection 
from the above and from the below layers

oSince it’s a Boltzmann machine, we need an 
energy function
𝐸 𝑥, ℎ1, ℎ2|𝜃 = 𝑥𝑇𝑊1ℎ1 + ℎ1𝑇𝑊2ℎ2 + ℎ2𝑇𝑊3ℎ3
𝑝 ℎ2𝑘 ℎ1, ℎ3 = 𝜎(෍

𝑗

𝑊1
𝑗𝑘ℎ1

𝑗 +෍
𝑙

𝑊3
𝑘𝑙ℎ3𝑘)

Deep Boltzmann Machines

€ •
: ;

= Si
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oSchematically similar to Deep Belief Networks
oBut, Deep Boltzmann Machines (DBM) are 

undirected models
◦Belong to the Markov Random Field family

oSo, two types of relationships: bottom-up and up-
bottom

𝑝 ℎ2𝑘 ℎ1, ℎ3 = 𝜎(෍
𝑗

𝑊1
𝑗𝑘ℎ1

𝑗 +෍
𝑙

𝑊3
𝑘𝑙ℎ3𝑘)

Deep Boltzmann Machines

•



UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES                                                                                    EXPLICIT GENERATIVE MODELS - 17

oComputing gradients is intractable
o Instead, variational methods (mean-field) or sampling methods are used

Training Deep Boltzmann Machines

Standard NN

PBYM|
*

f f
*

u



Bayesian Modelling
Variational Inference
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oObserved variables 𝑥
o Latent variables 𝜃
◦Both unobservable model parameters 𝑤 and

unobservable model activations 𝑧
◦𝜃 = {𝑤, 𝑧}
o Joint probability density function (pdf): 𝑝(𝑥, 𝜃)
oMarginal pdf: 𝑝 𝑥 = 𝜃׬ 𝑝 𝑥, 𝜃 𝑑𝜃
o Prior pdf Æmarginal over input: 𝑝 𝜃 = 𝑥׬ 𝑝 𝑥, 𝜃 𝑑𝑥
◦Usually a user defined pdf

o Posterior pdf: 𝑝 𝜃|𝑥
o Likelihood pdf: 𝑝 𝑥|𝜃

Bayesian Terminology

𝑥

⇐ e÷*#o
-8--0
. r
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o Posterior pdf
𝑝 𝜃|𝑥 =
=
𝑝(𝑥, 𝜃)
𝑝(𝑥)

=
𝑝 𝑥 𝜃 𝑝(𝜃)

𝑝(𝑥)
=

𝑝 𝑥 𝜃 𝑝(𝜃)
′𝜃׬ 𝑝(𝑥, θ′) 𝑑θ′

∝ 𝑝 𝑥 𝜃 𝑝(𝜃)
o Posterior Predictive pdf

𝑝 𝑦𝑛𝑒𝑤|𝑦 = න
𝜃
𝑝 𝑦𝑛𝑒𝑤 𝜃 𝑝 𝜃 𝑦 𝑑𝜃

Bayesian Terminology

Å Conditional probability

Å Bayes Rule

ÅMarginal probability 

Å 𝑝(𝑥 ) is constant 

" 8←- * ,
.PE#.hofp.. ,

2
, 0
3

4 :# ←

* * * *
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oConjugate priors
◦when posterior and prior belong to the same 
family, so the joint pdf is easy to compute

oPoint estimate approximations of
latent variables
◦ instead of computing a distribution over all 
possible values for the variable, compute one 
point only, e.g. the most likely (maximum 
likelihood or max a posteriori estimate)
𝜃∗ = arg𝜃 max𝑝 𝑥 𝜃 𝑝 𝜃 (𝑀𝐴𝑃)
𝜃∗ = arg𝜃 max𝑝 𝑥 𝜃 (𝑀𝐿𝐸)

◦Quite good when the posterior distribution is 
peaky (low variance)

Bayesian Terminology

*
Point estimate of your 
neural network weight

it
⇒hate
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oEstimate the posterior density 𝑝 𝜃|𝑥 for your training data 𝑥
oTo do so, need to define the prior 𝑝 𝜃 and likelihood 𝑝 𝑥|𝜃 distributions
oOnce the 𝑝 𝜃|𝑥 density is estimated, Bayesian Inference is possible
◦𝑝 𝜃|𝑥 is a (density) function, not just a single number (point estimate)

oBut how to estimate the posterior density?
◦Markov Chain Monte Carlo (MCMC) Æ Simulation-like estimation
◦Variational Inference Æ Turn estimation to optimization

Bayesian Modelling

.

• •
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oEstimating the true posterior 𝑝 𝜃|𝑥 is not always possible
◦especially for complicated models like neural networks 

oVariational Inference assumes another function 𝑞 𝜃|𝜑 with 
which we want to approximate the true posterior 𝑝 𝜃|𝑥
◦𝑞 𝜃|𝜑 is the approximate posterior
◦Note that the approximate posterior does not depend on the observable 
variables 𝑥

oWe approximate by minimizing the reverse KL-divergence w.r.t. 𝜑
𝜑∗ = argmin

𝜑
𝐾𝐿(𝑞(𝜃|𝜑)||𝑝 𝜃|𝑥 )

oTurn inference into optimization

Variational Inference

.⇐reeled←e•
.

⇐
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Variational Inference (graphically)

Underestimating variance. Why?

foowwdk 1

EIlostf.OxAte8O@FEIEI.Y.ae#_j-9C*p(dhdraokMprotest -6see

. fanon4h ifcanne
→ approximated

oneraaheau -7 / wide bough p .
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Variational Inference (graphically)

Underestimating variance. Why?
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Variational Inference (graphically)

Underestimating variance. Why?
How to overestimate variance?
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Variational Inference (graphically)

Underestimating variance. Why?
How to overestimate variance? Forward KL
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oTo make the optimization of the VI easier, one can assume the latent 
variables are independent of each other

𝑞 𝜃 𝜑 =ෑ
𝑗

𝑞𝑗(𝜃𝑗|𝜑𝑗)

oThe optimization is often done with CAVI
◦Coordinate-Ascent Variational Inference
◦ Initially set 𝜑 randomly
◦For each 𝑗 in turn you set 𝑞𝑗 𝜃𝑗 𝜑𝑗 = 𝔼𝑔−𝑗[log 𝑝(𝜃|𝑥)]

Mean-Field Approximation and CAVI Optimization

-

.

o
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oGiven latent variables 𝜃 and the 
approximate posterior

𝑞𝜑 𝜃 = 𝑞 𝜃|𝜑
o The log marginal is

log 𝑝 𝑥 = logන
𝜃
𝑝 𝑥, 𝜃 𝑑𝜃

= logන
𝜃
𝑝 𝑥, 𝜃

𝑞𝜑 𝜃
𝑞𝜑 𝜃

𝑑𝜃

= log𝔼𝑞𝜑(𝜃)
𝑝(𝑥, 𝜃)
𝑞𝜑 𝜃

≤ 𝔼𝑞𝜑 𝜃 log
𝑝(𝑥, 𝜃)
𝑞𝜑 𝜃

Variational Inference - Evidence Lower Bound (ELBO)

= 𝔼𝑞𝜑 𝜃 log 𝑝(𝑥, 𝜃) − 𝔼𝑞𝜑 𝜃 log 𝑞𝜑(𝜃)
= 𝔼𝑞𝜑 𝜃 log 𝑝(𝑥, 𝜃) + Η θ
= ELBOθ,φ(x)

= 𝔼𝑞𝜑 𝜃 log 𝑝(𝑥|𝜃) − 𝔼𝑞𝜑 𝜃 log 𝑝 𝜃
+ 𝔼𝑞𝜑 𝜃 log 𝑞𝜑 𝜃
= 𝔼𝑞𝜑 𝜃 log 𝑝(𝑥|𝜃) − KL(𝑞𝜑 𝜃 ||p(θ))
= ELBOθ,φ(x)

or

°
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oGiven latent variables 𝜃 and the 
approximate posterior

𝑞𝜑 𝜃 = 𝑞 𝜃|𝜑
o The log marginal is

Variational Inference - Evidence Lower Bound (ELBO) we

www.#.....ofoEEEi:IIEfEgft*tYIdiEkooY.bgfpcx.ohg9f9o9ldd-nEEtaEa@oFoEaTz.Ee9EEheiyaou4EI7.E

Encourage

.ae#BItglggjlbsPkBD@dIPMl
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o It is easy to see that the ELBO is directly related to the marginal
ELBOθ,φ x =
= 𝔼𝑞𝜑 𝜃 log 𝑝(𝑥, 𝜃) − 𝔼𝑞𝜑 𝜃 log 𝑞𝜑 𝜃
= 𝔼𝑞𝜑 𝜃 log 𝑝(𝜃|𝑥) + 𝔼𝑞𝜑 𝜃 log 𝑝(𝑥) − 𝔼𝑞𝜑 𝜃 log 𝑞𝜑 𝜃
= 𝔼𝑞𝜑 𝜃 log 𝑝(𝑥) − 𝐾𝐿(𝑞𝜑 𝜃 ||𝑝(𝜃|𝑥))
= log 𝑝(𝑥) − 𝐾𝐿(𝑞𝜑 𝜃 ||𝑝(𝜃|𝑥))
⇒
log 𝑝(𝑥) = ELBOθ,φ x + 𝐾𝐿(𝑞𝜑 𝜃 ||𝑝(𝜃|𝑥))

oYou can also see ELBOθ,φ x as Variational Free Energy

ELBO and the marginal

Å log 𝑝(𝑥) does not depend on 𝑞𝜑 𝜃
Å 𝔼𝑞𝜑 𝜃 [1]=1

-

• 0--0
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o It is easy to see that the ELBO is directly related to the marginal
ELBOθ,φ x =

ELBO and the marginal
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o log 𝑝(𝑥) = ELBOθ,φ x + 𝐾𝐿(𝑞𝜑 𝜃 ||𝑝(𝜃|𝑥))
oThe log-likelihood is constant, as it does not depends on any parameter
oAlso, both ELBOθ,φ x > 0 and 𝐾𝐿(𝑞𝜑 𝜃 ||𝑝 𝜃 𝑥 ) > 0

1. The higher the Variational Lower Bound ELBOθ,φ x , the smaller the 
difference between the approximate posterior 𝑞𝜑 𝜃 and the true 
posterior 𝑝 𝜃 𝑥 Æ better latent representation

2. The Variational Lower Bound ELBOθ,φ x approaches the log-likelihood 
Æ better density model

ELBO interpretations

oe.gs
-

-



UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES                                                                                    EXPLICIT GENERATIVE MODELS - 35

oThe variational distribution 𝑞 𝜃|𝜑 does not depend directly on data
◦Only indirectly, via minimizing its distance to the true posterior 𝐾𝐿(𝑞 𝜃|𝜑 ||𝑝(𝜃|𝑥))

oSo, with 𝑞 𝜃|𝜑 we have a major optimization problem, as the 
approximate posterior must approximate the whole dataset 𝑥 =
[𝑥1, 𝑥2, … , 𝑥𝑁] jointly

oAs this is obviously quite complex, one can amortize the optimization on 
individual data points by setting

𝑞 𝜃|𝜑 = 𝑞𝜑(𝜃|𝑥)
oPredict model parameters 𝜃 using a 𝜑-parameterized model of the input 𝑥
oUse it for parameters that depend on data, such as the latent activations

Amortized Inference

:
•



UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES                                                                                    EXPLICIT GENERATIVE MODELS - 36

Amortized Inference (Intuitively)

oOriginally, Variational Inference assumed that 𝑞 𝜃|𝜑 describes the 
approximate posterior of the dataset as a whole
◦Think of 𝜃 not as the latent activations 𝑧, but only the latent model variables 𝑤

Itemed"
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oLet’s rewrite the ELBO a bit more explicitly
ELBO𝜃, 𝜑 𝑥 = 𝔼𝑞𝜑 𝜃 log 𝑝(𝑥|𝜃) − KL(𝑞𝜑 𝜃 ||p(θ))
= 𝔼𝑞𝜑 𝑧|𝑥 log 𝑝𝜃(𝑥|𝑧) − KL(𝑞𝜑 𝑧|𝑥 ||pλ(z))

o Instead of 𝑝(𝑥|𝜃) we have 𝑝𝜃(𝑥|𝑧) to indicate that the model for the 
posterior density has weights parameterized by 𝜃 and latent model 
activations parameterized by 𝑧

o Instead of p(θ) we have pλ(z), namely we put a 𝜆-parameterized prior 
only on the latent activations z and not the model weights

o Instead of 𝑞 𝜃|𝜑 we have 𝑞𝜑 𝑧|𝑥 to indicate that the model 
approximates the posterior density of the latent activations, and the 
model weights are parameterized by 𝜑

Variational Autoencoders

-
⇒#
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o So, we have ELBO𝜃, 𝜑 𝑥 = 𝔼𝑞𝜑 𝑧|𝑥 log 𝑝𝜃(𝑥|𝑧) −
KL(𝑞𝜑 𝑧|𝑥 ||pλ(z))

o What if we model the densities 𝑝𝜃(𝑥|𝑧) and 𝑞𝜑 𝑧|𝑥 as neural 
networks?

o The approximate posterior looks like a standard CovnNet (or MLP), 
which receives an image input 𝑥 and returns a feature map/latent 
variable 𝑧
◦ Also known as encoder or inference network

o The likelihood term 𝑝𝜃(𝑥|𝑧) looks like an inverted ConvNet
(deconvolutions), which given a latent feature map 𝑧 reconstructs the 
input 𝑥
◦ Also known as decoder or generator network, because it recognizes the input given 

the latent variable

o A difference from a standard autoencoder is we now have an opinion 
of what the distribution of the latents z should look like, with pλ(z))

Variational Autoencoders

𝑧pλ(z)

𝑞𝜑 𝑧|𝑥

𝑝𝜃(𝑥|𝑧)

Encoder/Inference/Recognition
network

Decoder/Generator
network

-
←
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oMaximize the Evidence Lower Bound (ELBO)
◦Or minimize the negative ELBO

ℒ 𝜃, 𝜑 = 𝔼𝑞𝜑 𝑧|𝑥 log 𝑝𝜃(𝑥|𝑧) − KL(𝑞𝜑 𝑧|𝑥 ||pλ(z))
oHow to we optimize the ELBO?

Training Variational Autoencoders

.
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oMaximize the Evidence Lower Bound (ELBO)
◦Or minimize the negative ELBO

ℒ 𝜃, 𝜑 = 𝔼𝑞𝜑 𝑍|𝑥 log 𝑝𝜃(𝑥|𝑍) − KL(𝑞𝜑 𝑍|𝑥 ||pλ(Z))

= න
𝑧
𝑞𝜑 𝑧 𝑥 log 𝑝𝜃(𝑥|𝑧) 𝑑𝑧 − න

𝑧
𝑞𝜑 𝑧 𝑥 log

𝑞𝜑(𝑧|𝑥)
𝑝𝜆(𝑧)

𝑑𝑧

oForward propagation Æ compute the two terms
oThe first term is an integral (expectation) that we cannot solve analytically. 

So, we need to sample from the pdf instead
◦When 𝑝𝜃(𝑥|𝑧) contains even a few nonlinearities, like in a neural network, the integral 
is hard to compute analytically

Training Variational Autoencoders

items
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Complex integrals
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oMaximize the Evidence Lower Bound (ELBO)
◦Or minimize the negative ELBO

ℒ 𝜃, 𝜑 = 𝔼𝑞𝜑 𝑍|𝑥 log 𝑝𝜃(𝑥|𝑍) − KL(𝑞𝜑 𝑍|𝑥 ||pλ(Z))

= න
𝑧
𝑞𝜑 𝑧 𝑥 log 𝑝𝜃(𝑥|𝑧) 𝑑𝑧 − න

𝑧
𝑞𝜑 𝑧 𝑥 log

𝑞𝜑(𝑧|𝑥)
𝑝𝜆(𝑧)

𝑑𝑧

o Forward propagation Æ compute the two terms
o The first term is an integral (expectation) that we cannot solve analytically. So, 

we need to sample from the pdf instead
◦When 𝑝𝜃(𝑥|𝑧) contains even a few nonlinearities, like in a neural network, the integral is hard 

to compute analytically

o The second term is the KL divergence between two distributions that we know

Training Variational Autoencoders

••@"⇐
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oWe set the prior pλ(Z) to be the unit Gaussian
p 𝑍 ~ 𝑁(0, 1)

oWe set the likelihood to be a Bernoulli for binary data
𝑝(𝑋|𝑍)~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜋)

oWe set 𝑞𝜑(Ζ|x) to be a neural network (MLP, ConvNet), 
which maps an input x to the Gaussian distribution, 
specifically it’s mean and variance
◦𝜇𝑧, 𝜎𝑧 ~ 𝑞𝜑(Ζ|x)
◦The neural network has two outputs, one is the mean 𝜇𝑥 and the 

other the 𝜎𝑥, which corresponds to the covariance of the Gaussian

oWe set 𝑝𝜃(X|Z) to be an inverse neural network, which 
maps Z to the Bernoulli distribution if our outputs binary 
(e.g. Binary MNIST)

Typical VAE

𝑞𝜑 𝑧|𝑥

𝜇𝑧 𝜎𝑧

𝜇𝑧
𝜎𝑧

age§
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VAE: Interpolation in the latent space ze
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oSample 𝑧 from the approximate posterior density  𝑧~𝑞𝜑 𝑍 𝑥
◦As 𝑞𝜑 is a neural network that outputs values from a specific and known parametric pdf, 
e.g. a Gaussian, sampling from it is rather easy

◦Often even a single draw is enough

oSecond, compute the log 𝑝𝜃(𝑥|𝑍)
◦As 𝑝𝜃 is a a neural network that outputs values from a specific and known parametric pdf, 
e.g. a Bernoulli for white/black pixels, computing the log-prob is easy

oComputing the ELBO is rather straightforward in the standard case
oHow should we optimize the ELBO?

Forward propagation in VAE
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oSample 𝑧 from the approximate posterior density  𝑧~𝑞𝜑 𝑍 𝑥
◦As 𝑞𝜑 is a neural network that outputs values from a specific and known parametric pdf, 
e.g. a Gaussian, sampling from it is rather easy

◦Often even a single draw is enough

oSecond, compute the log 𝑝𝜃(𝑥|𝑍)
◦As 𝑝𝜃 is a a neural network that outputs values from a specific and known parametric pdf, 
e.g. a Bernoulli for white/black pixels, computing the log-prob is easy

oComputing the ELBO is rather straightforward in the standard case
oHow should we optimize the ELBO? Backpropagation?

Forward propagation in VAE
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oBackpropagation Æ compute the gradients of
ℒ 𝜃, 𝜑 = 𝔼𝑧~𝑞𝜑 𝑍|𝑥 log 𝑝𝜃(𝑥|𝑧) − KL(𝑞𝜑 𝑍|𝑥 ||pλ(Z))

o𝛻𝜃ℒ = 𝔼𝑧~𝑞𝜑 𝑍|𝑥 𝛻𝜃 log 𝑝𝜃(𝑥|𝑧)
◦The expectation and sampling in 𝔼𝑧~𝑞𝜑 𝑍|𝑥 does not depend on 𝜃, so no problem!
◦Also, the KL does not depend on 𝜃, so no gradient from over there!

o𝛻𝜑ℒ = 𝛻𝜑 𝔼𝑧~𝑞𝜑 𝑍|𝑥 log 𝑝𝜃(𝑥|𝑧) − 𝛻𝜑 KL(𝑞𝜑 𝑍|𝑥 ||pλ(Z))

Backward propagation in VAE

a 88€-0
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oBackpropagation Æ compute the gradients of
ℒ 𝜃, 𝜑 = 𝔼𝑧~𝑞𝜑 𝑍|𝑥 log 𝑝𝜃(𝑥|𝑧) − KL(𝑞𝜑 𝑍|𝑥 ||pλ(Z))

Backward propagation in VAE
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oBackpropagation Æ compute the gradients of
ℒ 𝜃, 𝜑 = 𝔼𝑧~𝑞𝜑 𝑍|𝑥 log 𝑝𝜃(𝑥|𝑧) − KL(𝑞𝜑 𝑍|𝑥 ||pλ(Z))

o𝛻𝜃ℒ = 𝔼𝑧~𝑞𝜑 𝑍|𝑥 𝛻𝜃 log 𝑝𝜃(𝑥|𝑧)
◦The expectation and sampling in 𝔼𝑧~𝑞𝜑 𝑍|𝑥 does not depend on 𝜃, so no problem!
◦Also, the KL does not depend on 𝜃, so no gradient from over there!

o𝛻𝜑ℒ = 𝛻𝜑 𝔼𝑧~𝑞𝜑 𝑍|𝑥 log 𝑝𝜃(𝑥|𝑧) − 𝛻𝜑 KL(𝑞𝜑 𝑍|𝑥 ||pλ(Z))

oProblem?

Backward propagation in VAE
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oBackpropagation Æ compute the gradients of
ℒ 𝜃, 𝜑 = 𝔼𝑧~𝑞𝜑 𝑍|𝑥 log 𝑝𝜃(𝑥|𝑧) − KL(𝑞𝜑 𝑍|𝑥 ||pλ(Z))

o𝛻𝜃ℒ = 𝔼𝑧~𝑞𝜑 𝑍|𝑥 𝛻𝜃 log 𝑝𝜃(𝑥|𝑧)
◦The expectation and sampling in 𝔼𝑧~𝑞𝜑 𝑍|𝑥 does not depend on 𝜃, so no problem!
◦Also, the KL does not depend on 𝜃, so no gradient from over there!

o𝛻𝜑ℒ = 𝛻𝜑 𝔼𝑧~𝑞𝜑 𝑍|𝑥 log 𝑝𝜃(𝑥|𝑧) − 𝛻𝜑 KL(𝑞𝜑 𝑍|𝑥 ||pλ(Z))

oProblem? Sampling 𝑧~𝑞𝜑 𝑍|𝑥 is not differentiable Æ no gradients

oNo gradients Æ No backprop Æ No training! Æ Solution?

Backward propagation in VAE
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oSo, our latent variable 𝑍 is a Gaussian (in the standard VAE) represented by 
the mean and variance 𝜇𝑍, 𝜎𝑍, which are the output of a neural net

oSo, we can train by sampling randomly from that Gaussian
𝑧~𝑁(𝜇𝑍, 𝜎𝑍)

oOnce we have that 𝑧, however, it’s a fixed value (not a function), so we 
cannot backprop

oWe could use, however, the REINFORCE algorithm to compute an 
approximation to the gradient
◦High-variance gradients Æ slow and not very effective learning

Solution: REINFORCE?

:
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o Remember, we have a Gaussian output 𝑧~𝑁(𝜇𝑍, 𝜎𝑍)

o For certain pdfs, including the Gaussian, we can rewrite their random variable 𝑧
as deterministic transformations of a simpler random variable 𝜀

o For the Gaussian specifically, the following two formulations are equivalent
𝑧~𝑁 𝜇𝑍, 𝜎𝑍 ⇔ 𝑧 = 𝜇𝑍 + 𝜀 ⋅ 𝜎𝑧,

where 𝜀~𝑁(0, 1) and 𝜇𝑍, 𝜎𝑍 are deterministic values from the NN function

Solution: Reparameterization trick

-80€!¥?"
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o Instead of sampling from 𝑧~𝑁 𝜇𝑍, 𝜎𝑍 , we sample from 𝜀~𝑁(0, 1) and 
then we compute 𝑧

oSampling directly from 𝑧~𝑁 𝜇𝑍, 𝜎𝑍 leads to high-variance estimates
oSampling directly from 𝜀~𝑁 0,1 leads to low-variance estimates
◦Why low variance? Exercise for the interested reader

oRemember: since we are sampling for 𝑧, we are also sampling gradients
oMore distributions beyond Gaussian possible: Laplace, Student-t, Logistic, 

Cauchy, Rayleight, Pareto

Solution: Reparameterization trick

High-variance 
gradient

Low-variance 
gradient

:
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oAgain, the latent variable is 𝑧 = 𝜇𝑍 + 𝜀 ⋅ 𝜎𝑧
o𝜇𝑍 and 𝜎𝑧 are deterministic functions (via the neural network encoder)
o𝜀 is a random variable, which comes externally
oThe 𝑧 as a result is itself a random variable, because of 𝜀
oHowever, now the randomness is not associated with the neural network 

and its parameters that we have to learn
◦The randomness instead comes from the external 𝜀
◦The gradients flow through 𝜇𝑍 and 𝜎𝑍

Check what is random

.
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Reparameterization Trick (graphically)

a.
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VAE Training Pseudocode

⇒
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VAE for NLP

e-
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VAE for Image Resynthesis

O.O
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VAE for designing chemical compounds

•
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oUsing simple pdfs, like a Gaussian, for the 
approximate posterior limits the 
expressivity of the model

oBetter make sure the approximate posterior 
comes from a class of models that can even
contain the true posterior

oUse a series of 𝐾 invertible transformations 
to construct the approximate posterior
◦𝑧𝑘 = 𝑓𝑘 ∘ 𝑓𝑘−1 ∘ ⋯𝑓1(𝑧0)
◦Rule of change for variables

Normalizing Flows https://blog.evjang.com/2018/01/nf1.html
https://www.shakirm.com/slides/DeepGenModelsTutorial.pdf

https://arxiv.org/pdf/1505.05770.pdf

Changing from the 𝑥 variable to 𝑦 using 
the transformation y = 𝑓 𝑥 = 2𝑥 + 1

a
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Normalizing Flows https://blog.evjang.com/2018/01/nf1.html
https://www.shakirm.com/slides/DeepGenModelsTutorial.pdf

https://arxiv.org/pdf/1505.05770.pdf

Mm
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Normalizing Flows

https://www.shakirm.com/slides/DeepGenModelsTutorial.pdf
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Normalizing Flows on Non-Euclidean Manifolds

https://www.shakirm.com/slides/DeepGenModelsTutorial.pdf

fed
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Normalizing Flows on Non-Euclidean Manifolds
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Summary

oGentle intro to Bayesian Modelling and 
Variational Inference

oRestricted Boltzmann Machines
oDeep Boltzmann Machines
oDeep Belief Network
oContrastive Divergence
oVariational Autoencoders
oNormalizing Flows


