

Lecture 9: Explicit Generative Models Efstratios Gavves

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES

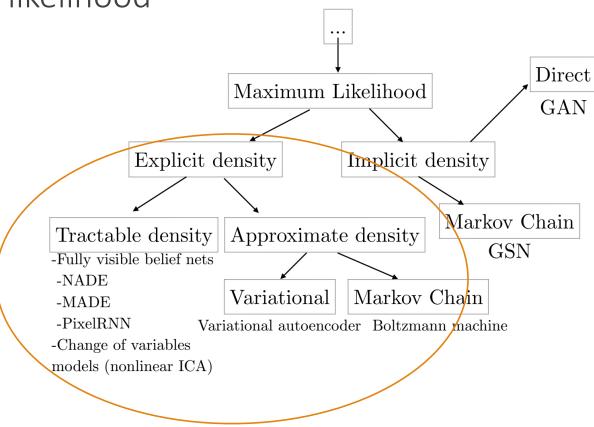
o Gentle intro to Bayesian Modelling and Variational Inference

- Restricted Boltzmann Machines
- o Deep Boltzmann Machines
- Deep Belief Network
- Ocontrastive Divergence
- Variational Autoencoders
- o Normalizing Flows

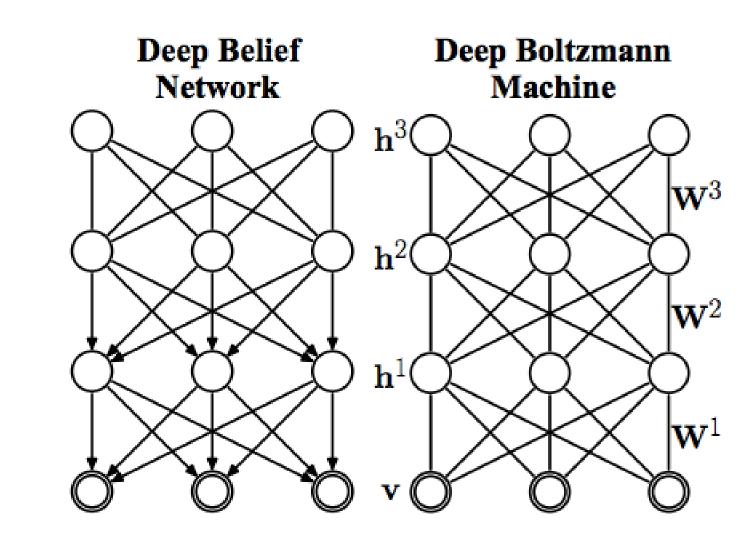
Plug in the model density function to likelihood
 Then maximize the likelihood

Problems

- Design complex enough model that meets data complexity
- At the same time, make sure model is computationally tractable
- More details in the next lecture



Bayesian Modelling Variational Inference



• We can define an explicit density function over all possible relations ψ_c between the input variables x_c

$$p(x) = \prod_{c} \psi_{c} \left(x_{c} \right)$$

• Quite inefficient \rightarrow think of all possible relations (not just pairwise) between $256 \times 256 = 65K$ input variables

 Solution: Define an energy function to model the relations between the inputs variables o Boltzmann (or Gibbs) distribution defined over a free energy function E(x)

$$p(x) = \frac{1}{Z} \exp(-E(x))$$

o Z is the normalization factor that makes sure $\int_{x} p(x) dx = 1$

• Very expensive to compute \rightarrow if $x = \{0, 1\}$ computing Z requires 2^d computations

• Better restrict the model further to a bottleneck

$$E(x) = -x^T W h - b^T x - c^T h$$

 In statistical mechanics and mathematics, a Boltzmann distribution (also called Gibbs distribution) is a probability distribution, probability measure, or frequency distribution of particles in a system over various possible states. The distribution is expressed in the form

$$F(state) \propto \exp(-\frac{E}{kT})$$

• *E* is the state energy, *k* is the Boltzmann constant, *T* is the thermodynamic temperature

 $\bullet E(x) = -x^T W h - b^T x - c^T h$

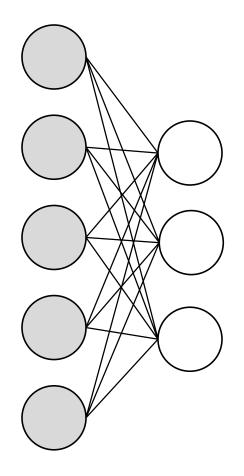
• The $x^T W h$ models correlations between x and the latent activations via the parameter matrix W

- The $b^T x$, $c^T h$ model the priors
- Restricted Boltzmann Machines (RBM) assume x, h to be binary

$$o E(x) = -x^T W h - b^T x - c^T h, \ \theta = \{W, b, c\}$$

• The free energy function $F(x) = -\log \sum_{h} \exp(-E(x,h))$ defines a bipartite graph with undirected connections

Information flows forward and backward

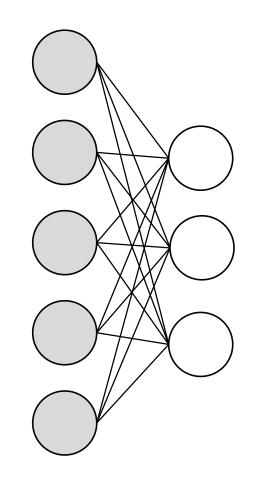


• The hidden units h_j are independent to each other conditioned on the visible units

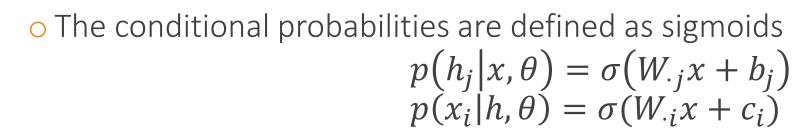
$$p(h|x) = \prod_{j} p(h_{j}|x,\theta)$$

• The hidden units x_i are independent to each other conditioned on the visible units

$$p(x|h) = \prod_{i} p(x_i|h,\theta)$$

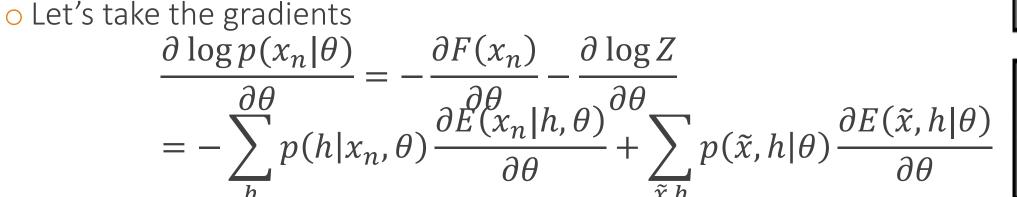


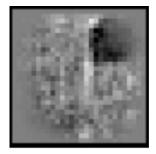
Training RBMs

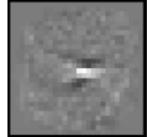


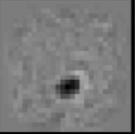
o Maximize log-likelihood

$\mathcal{L}(\theta) = \frac{1}{N} \sum_{n} \log p(x_n | \theta)$



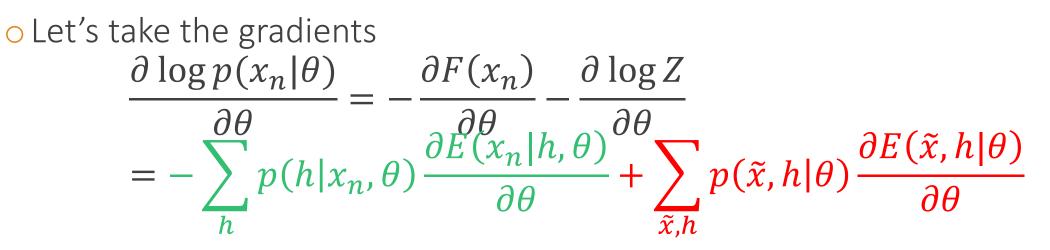






Hidden unit (features)

EXPLICIT GENERATIVE MODELS - 11



Easy because we just substitute in the definitions the x_n and sum over h
 Hard because you need to sum over both x̃, h which can be huge
 It requires approximate inference, e.g., MCMC

• Approximate the gradient with Contrastive Divergence

• Specifically, apply Gibbs sampler for k steps and approximate the gradient $\partial \log p(x_n|\theta) \qquad \partial E(x_n, h_0|\theta) \quad \partial E(x_k, h_k|\theta)$ $\partial \theta$ $\partial \theta$ $\partial \theta$ $\mathbf{h}_0 \sim \mathbf{P}(\mathbf{h}|\mathbf{x})$ $\mathbf{h}_1 \sim \mathbf{P}(\mathbf{h}|\mathbf{x}_1)$ Observations Reconstructions $\mathbf{x}_1 \sim \mathbf{P}(\mathbf{x}|\mathbf{h})$ Х

Hinton, Training Products of Experts by Minimizing Contrastive Divergence, Neural Computation, 2002

o RBMs are just one layer

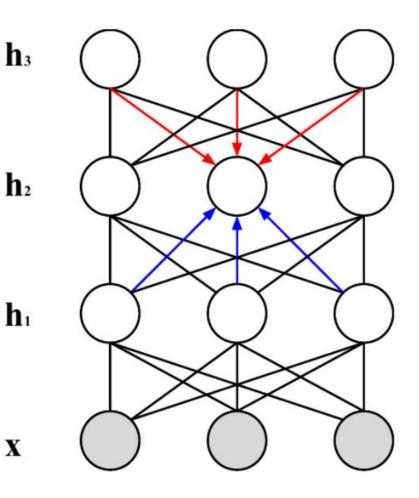
• Use RBM as a building block

• Stack multiple RBMs one on top of the other $p(x, h_1, h_2) = p(x|h_1) \cdot p(h_1|h_2)$

- Deep Belief Networks (DBN) are directed models
 - The layers are densely connected and have a single forward flow
 - This is because the RBN is directional, $p(x_i|h, \theta) = \sigma(W_i x + c_i)$, namely the input argument has only variable only from below



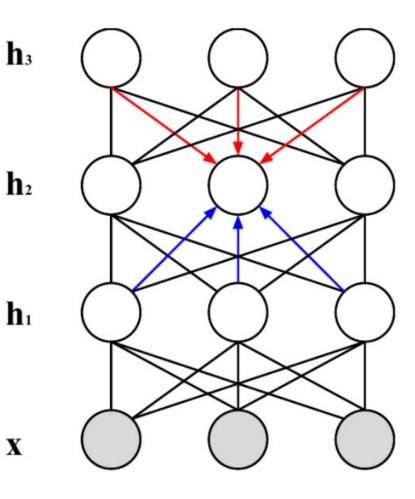
- Stacking layers again, but now with connection from the above and from the below layers
- Since it's a Boltzmann machine, we need an energy function $E(x, h_1, h_2 | \theta) = x^T W_1 h_1 + h_1^T W_2 h_2 + h_2^T W_3 h_3$ $p(h_2^k | h_1, h_3) = \sigma(\sum_j W_1^{jk} h_1^j + \sum_l W_3^{kl} h_3^k)$



• Schematically similar to Deep Belief Networks

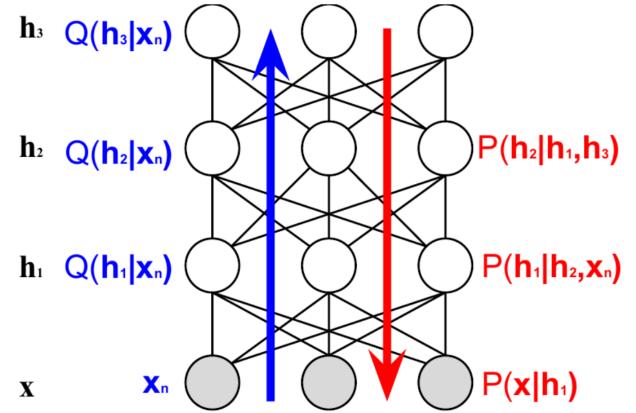
- But, Deep Boltzmann Machines (DBM) are undirected models
 - Belong to the Markov Random Field family
- So, two types of relationships: bottom-up and upbottom

$$p(h_2^k | h_1, h_3) = \sigma(\sum_j W_1^{jk} h_1^j + \sum_l W_3^{kl} h_3^k) \quad \mathbf{I}$$

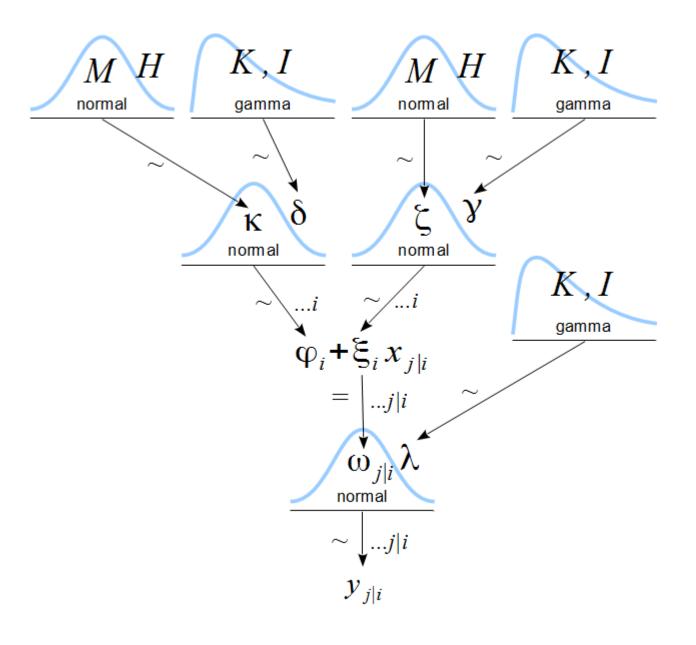


• Computing gradients is intractable

o Instead, variational methods (mean-field) or sampling methods are used



Bayesian Modelling Variational Inference



Bayesian Terminology

 \circ Observed variables x

 $_{
m o}$ Latent variables heta

 Both unobservable model parameters w and unobservable model activations z

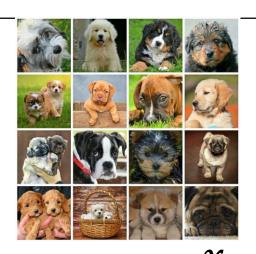
 $\circ \theta = \{w, z\}$

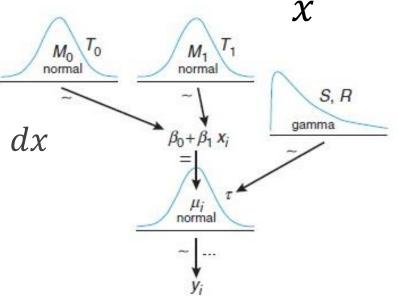
• Joint probability density function (pdf): $p(x, \theta)$

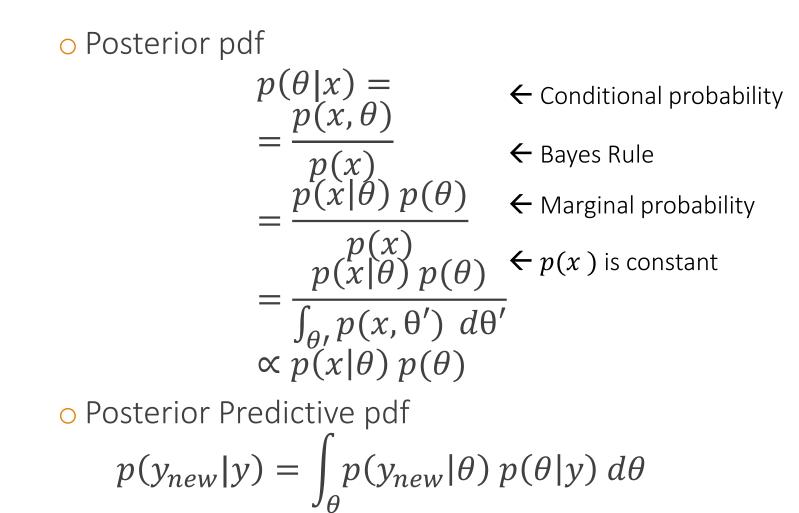
• Marginal pdf: $p(x) = \int_{\theta} p(x, \theta) d\theta$

- Prior pdf \rightarrow marginal over input: $p(\theta) = \int_x p(x, \theta) dx$
- Usually a user defined pdf
- Posterior pdf: $p(\theta|x)$

o Likelihood pdf: $p(x|\theta)$





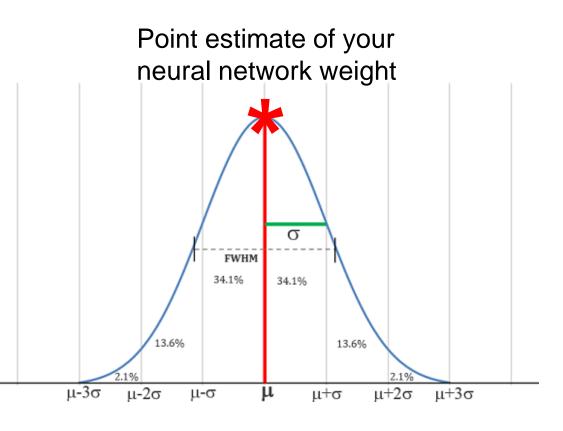


O Conjugate priors

 when posterior and prior belong to the same family, so the joint pdf is easy to compute

- Point estimate approximations of latent variables
 - instead of computing a distribution over all possible values for the variable, compute one point only, e.g. the most likely (maximum likelihood or max a posteriori estimate)

 $\begin{array}{l} \theta^* = \arg_{\theta} \max p(x|\theta) p(\theta) \ (MAP) \\ \theta^* = \arg_{\theta} \max p(x|\theta) \qquad (MLE) \end{array}$ • Quite good when the posterior distribution is peaky (low variance)



• Estimate the posterior density p(θ|x) for your training data x
• To do so, need to define the prior p(θ) and likelihood p(x|θ) distributions
• Once the p(θ|x) density is estimated, Bayesian Inference is possible
• p(θ|x) is a (density) function, not just a single number (point estimate)

• But how to estimate the posterior density?

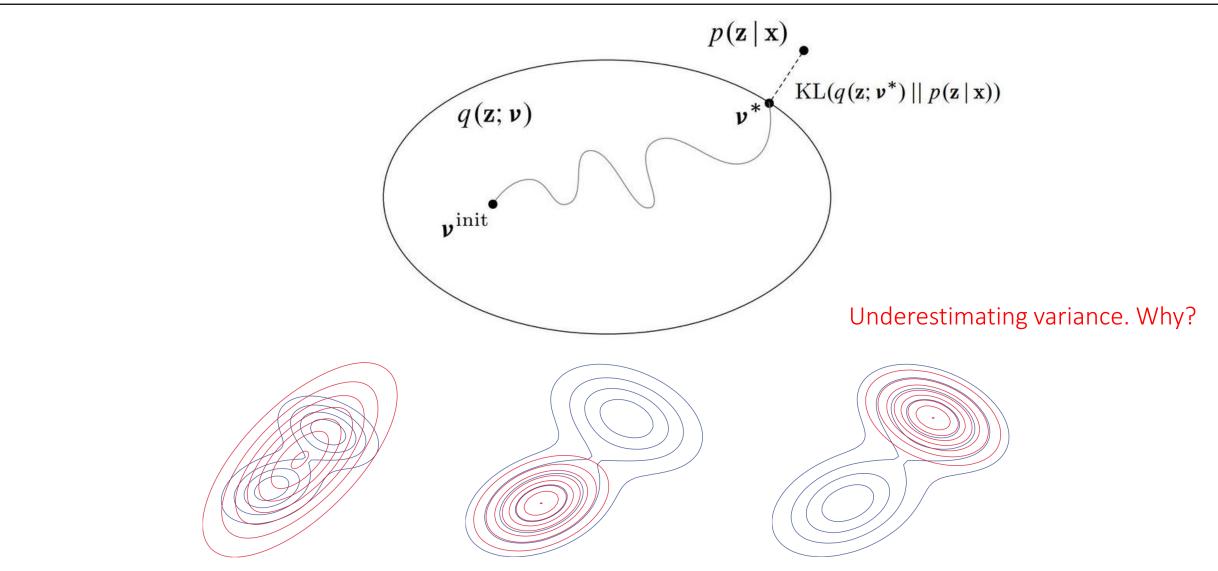
- Markov Chain Monte Carlo (MCMC) \rightarrow Simulation-like estimation
- $^{\circ}$ Variational Inference \rightarrow Turn estimation to optimization

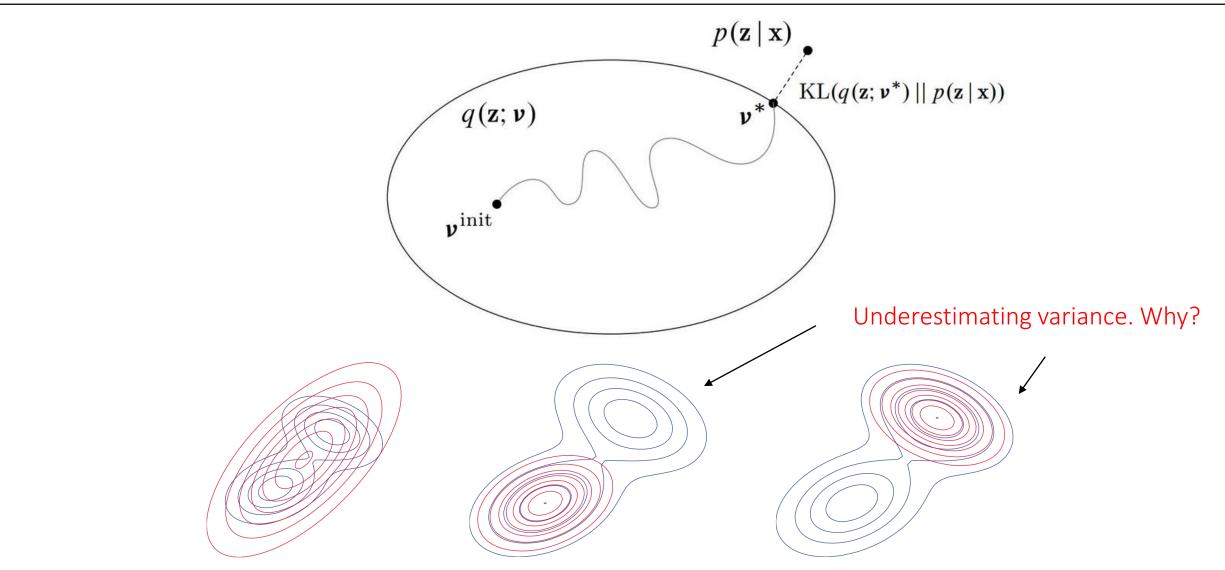
• Estimating the true posterior $p(\theta|x)$ is not always possible • especially for complicated models like neural networks

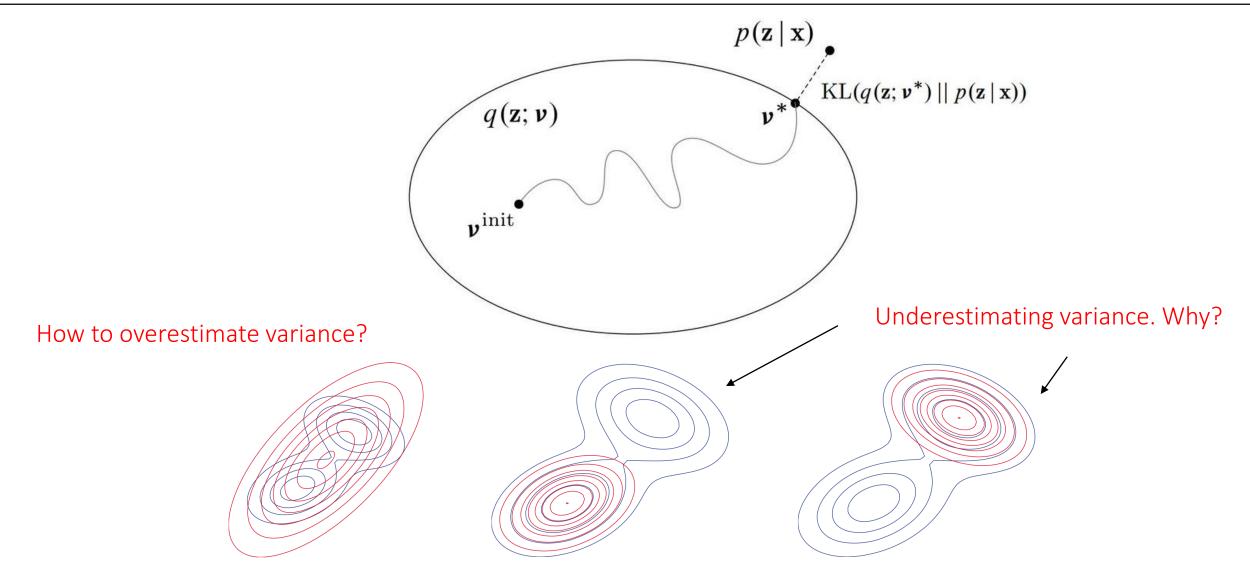
- Variational Inference assumes another function $q(\theta|\varphi)$ with which we want to approximate the true posterior $p(\theta|x)$
 - $\circ q(\theta|\varphi)$ is the approximate posterior
 - $^{\rm o}$ Note that the approximate posterior does not depend on the observable variables x

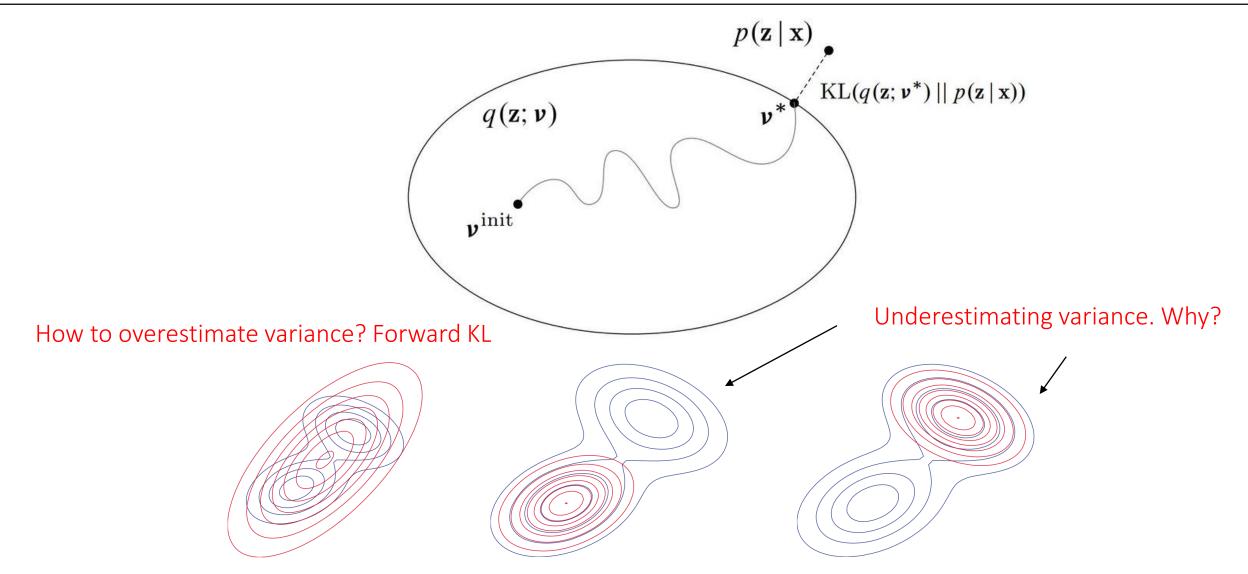
• We approximate by minimizing the **reverse** KL-divergence w.r.t. $\varphi^* = \arg\min_{\varphi} KL(q(\theta|\varphi)||p(\theta|x))$

• Turn inference into optimization









• To make the optimization of the VI easier, one can assume the latent variables are independent of each other

$$q(\theta|\varphi) = \prod_{j} q_{j}(\theta_{j}|\varphi_{j})$$

• The optimization is often done with CAVI

Coordinate-Ascent Variational Inference

 $^{\circ}$ Initially set arphi randomly

• For each
$$j$$
 in turn you set $q_j(\theta_j | \varphi_j) = \mathbb{E}_{g_{-j}}[\log p(\theta | x)]$

Variational Inference - Evidence Lower Bound (ELBO)

 \circ Given latent variables θ and the approximate posterior $q_{\omega}(\theta) = q(\theta|\varphi)$ • The log marginal is $\log p(x) = \log \int_{\theta} p(x,\theta) d\theta$ $= \log \int_{\theta} p(x,\theta) \frac{q_{\varphi}(\theta)}{q_{\varphi}(\theta)} d\theta$ $= \log \mathbb{E}_{q_{\varphi}(\theta)} \left[\frac{p(x,\theta)}{q_{\varphi}(\theta)} \right]$ $\leq \mathbb{E}_{q_{\varphi}(\theta)} \left[\log \frac{p(x,\theta)}{q_{\varphi}(\theta)} \right]$

$$= \mathbb{E}_{q_{\varphi}(\theta)} [\log p(x, \theta)] - \mathbb{E}_{q_{\varphi}(\theta)} [\log q_{\varphi}(\theta)]$$

= $\mathbb{E}_{q_{\varphi}(\theta)} [\log p(x, \theta)] + H(\theta)$
= $ELBO_{\theta, \varphi}(x)$

or

 $= \mathbb{E}_{q_{\varphi}(\theta)} [\log p(x|\theta)] - \mathbb{E}_{q_{\varphi}(\theta)} [\log p(\theta)]$ $+ \mathbb{E}_{q_{\varphi}(\theta)} [\log q_{\varphi}(\theta)]$ $= \mathbb{E}_{q_{\varphi}(\theta)} [\log p(x|\theta)] - \mathrm{KL}(q_{\varphi}(\theta)||p(\theta))$ $= \mathrm{ELBO}_{\theta,\omega}(x)$

Variational Inference - Evidence Lower Bound (ELBO)

• Given latent variables θ and the approximate posterior $a_{\alpha}(\theta) = a(\theta | \phi)$

$$q_{\varphi}(\theta) = q(\theta|\varphi)$$

• The log marginal is

o It is easy to see that the ELBO is directly related to the marginal $ELBO_{\theta,\omega}(x) =$ $= \mathbb{E}_{q_{\varphi}(\theta)}[\log p(x,\theta)] - \mathbb{E}_{q_{\varphi}(\theta)}[\log q_{\varphi}(\theta)]$ $= \mathbb{E}_{q_{\varphi}(\theta)}[\log p(\theta|x)] + \mathbb{E}_{q_{\varphi}(\theta)}[\log p(x)] - \mathbb{E}_{q_{\varphi}(\theta)}[\log q_{\varphi}(\theta)]$ $= \mathbb{E}_{q_{\varphi}(\theta)}[\log p(x)] - KL(q_{\varphi}(\theta)||p(\theta|x))]$ $= \log p(x) - KL(q_{\varphi}(\theta) || p(\theta | x))$ $\leftarrow \log p(x)$ does not depend on $q_{\varphi}(\theta)$ $\leftarrow \mathbb{E}_{q_{\omega}(\theta)}[1]=1$ \Rightarrow $\log p(x) = \text{ELBO}_{\theta, \omega}(x) + KL(q_{\omega}(\theta)||p(\theta|x))$ • You can also see $ELBO_{\theta, \omega}(x)$ as Variational Free Energy

o It is easy to see that the ELBO is directly related to the marginal $ELBO_{\theta,\phi}(x) =$

 $o \log p(x) = \text{ELBO}_{\theta,\varphi}(x) + KL(q_{\varphi}(\theta)||p(\theta|x))$

• The log-likelihood is constant, as it does not depends on any parameter • Also, both $\text{ELBO}_{\theta,\varphi}(\mathbf{x}) > 0$ and $KL(q_{\varphi}(\theta)||p(\theta|x)) > 0$

- 1. The higher the Variational Lower Bound $\text{ELBO}_{\theta,\varphi}(\mathbf{x})$, the smaller the difference between the approximate posterior $q_{\varphi}(\theta)$ and the true posterior $p(\theta|\mathbf{x}) \rightarrow$ better latent representation
- 2. The Variational Lower Bound $ELBO_{\theta,\varphi}(x)$ approaches the log-likelihood \rightarrow better density model

- The variational distribution $q(\theta|\varphi)$ does not depend directly on data • Only indirectly, via minimizing its distance to the true posterior $KL(q(\theta|\varphi)||p(\theta|x))$
- So, with $q(\theta|\varphi)$ we have a major optimization problem, as the approximate posterior must approximate the whole dataset $x = [x_1, x_2, ..., x_N]$ jointly
- As this is obviously quite complex, one can amortize the optimization on individual data points by setting

$$q(\theta|\varphi) = q_{\varphi}(\theta|x)$$

 \circ Predict model parameters heta using a arphi-parameterized model of the input x

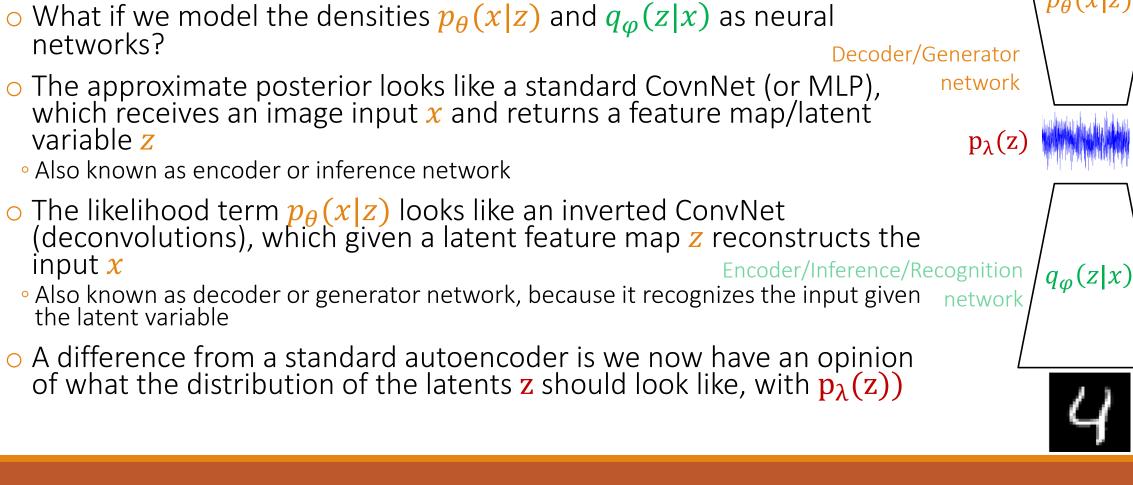
• Use it for parameters that depend on data, such as the latent activations

o Originally, Variational Inference assumed that $q(\theta|\phi)$ describes the approximate posterior of the dataset as a whole

• Think of heta not as the latent activations z, but only the latent model variables w

• Let's rewrite the ELBO a bit more explicitly $ELBO_{\theta,\varphi}(x) = \mathbb{E}_{q_{\varphi}(\theta)}[\log p(x|\theta)] - KL(q_{\varphi}(\theta)||p(\theta))$ $= \mathbb{E}_{q_{\varphi}(z|x)}[\log p_{\theta}(x|z)] - KL(q_{\varphi}(z|x)||p_{\lambda}(z))$

- o Instead of $p(x|\theta)$ we have $p_{\theta}(x|z)$ to indicate that the model for the posterior density has weights parameterized by θ and latent model activations parameterized by z
- o Instead of $p(\theta)$ we have $p_{\lambda}(z)$, namely we put a λ -parameterized prior only on the latent activations z and not the model weights
- o Instead of $q(\theta|\varphi)$ we have $q_{\varphi}(z|x)$ to indicate that the model approximates the posterior density of the latent activations, and the model weights are parameterized by φ



• So, we have $\text{ELBO}_{\theta,\varphi}(x) = \mathbb{E}_{q_{\varphi}(z|x)}[\log p_{\theta}(x|z)] - \text{KL}(q_{\varphi}(z|x)||p_{\lambda}(z))$

 $p_{\theta}(x|z)$

• Maximize the Evidence Lower Bound (ELBO)

• Or minimize the negative ELBO

 $\mathcal{L}(\theta, \varphi) = \mathbb{E}_{q_{\varphi}(z|x)}[\log p_{\theta}(x|z)] - \mathrm{KL}(q_{\varphi}(z|x)||p_{\lambda}(z))$

 \odot How to we optimize the ELBO?

• Maximize the Evidence Lower Bound (ELBO)

• Or minimize the negative ELBO

$$\mathcal{L}(\theta,\varphi) = \mathbb{E}_{q_{\varphi}(Z|x)}[\log p_{\theta}(x|Z)] - \mathrm{KL}(q_{\varphi}(Z|x)||p_{\lambda}(Z))$$
$$= \int_{Z} q_{\varphi}(z|x) \log p_{\theta}(x|z) \, dz - \int_{Z} q_{\varphi}(z|x) \log \frac{q_{\varphi}(z|x)}{p_{\lambda}(z)} \, dz$$

 \circ Forward propagation \rightarrow compute the two terms

- The first term is an integral (expectation) that we cannot solve analytically. So, we need to sample from the pdf instead
 - When $p_{\theta}(x|z)$ contains even a few nonlinearities, like in a neural network, the integral is hard to compute analytically

Complex integrals

• Maximize the Evidence Lower Bound (ELBO)

• Or minimize the negative ELBO

$$\mathcal{L}(\theta,\varphi) = \mathbb{E}_{q_{\varphi}(Z|x)}[\log p_{\theta}(x|Z)] - \mathrm{KL}(q_{\varphi}(Z|x)||p_{\lambda}(Z))$$
$$= \int_{Z} q_{\varphi}(z|x) \log p_{\theta}(x|z) \, dz - \int_{Z} q_{\varphi}(z|x) \log \frac{q_{\varphi}(z|x)}{p_{\lambda}(z)} \, dz$$

 \circ Forward propagation \rightarrow compute the two terms

- The first term is an integral (expectation) that we cannot solve analytically. So, we need to sample from the pdf instead
 - When $p_{\theta}(x|z)$ contains even a few nonlinearities, like in a neural network, the integral is hard to compute analytically

• The second term is the KL divergence between two distributions that we know

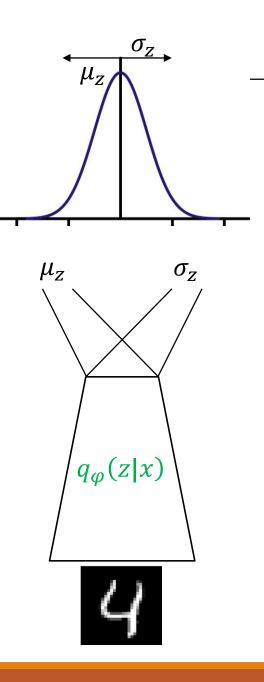
• We set the prior $p_{\lambda}(Z)$ to be the unit Gaussian $p(Z) \sim N(0, 1)$

• We set the likelihood to be a Bernoulli for binary data $p(X|Z) \sim Bernoulli(\pi)$

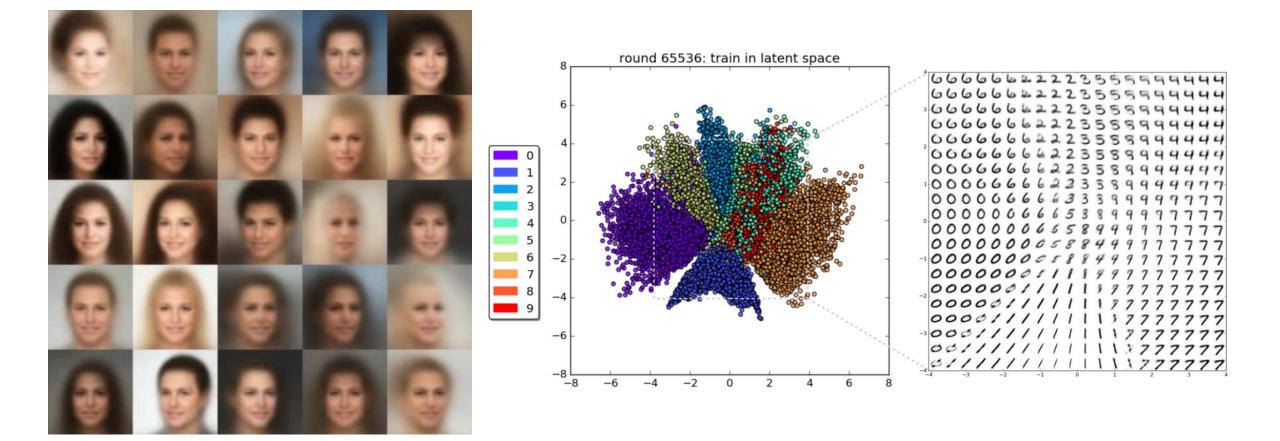
o We set $q_{\varphi}(\mathbf{Z}|\mathbf{x})$ to be a neural network (MLP, ConvNet), which maps an input \mathbf{x} to the Gaussian distribution, specifically it's mean and variance

° μ_z , $\sigma_z \sim q_{\varphi}(\mathbf{Z}|\mathbf{x})$

- $^{\rm o}$ The neural network has two outputs, one is the mean μ_x and the other the σ_x , which corresponds to the covariance of the Gaussian
- We set $p_{\theta}(X|Z)$ to be an inverse neural network, which maps Z to the Bernoulli distribution if our outputs binary (e.g. Binary MNIST)



VAE: Interpolation in the latent space



• Sample z from the approximate posterior density $z \sim q_{\varphi}(Z|x)$

- $^{\rm o}$ As q_{φ} is a neural network that outputs values from a specific and known parametric pdf, e.g. a Gaussian, sampling from it is rather easy
- Often even a single draw is enough
- Second, compute the $\log p_{\theta}(x|Z)$
- $^{\rm o}$ As p_{θ} is a a neural network that outputs values from a specific and known parametric pdf, e.g. a Bernoulli for white/black pixels, computing the log-prob is easy
- Computing the ELBO is rather straightforward in the standard case
- \odot How should we optimize the ELBO?

• Sample z from the approximate posterior density $z \sim q_{\varphi}(Z|x)$

- $^{\rm o}$ As q_{φ} is a neural network that outputs values from a specific and known parametric pdf, e.g. a Gaussian, sampling from it is rather easy
- Often even a single draw is enough
- Second, compute the $\log p_{\theta}(x|Z)$
- As p_{θ} is a a neural network that outputs values from a specific and known parametric pdf, e.g. a Bernoulli for white/black pixels, computing the log-prob is easy
- Computing the ELBO is rather straightforward in the standard case
- How should we optimize the ELBO? Backpropagation?

• Backpropagation \Rightarrow compute the gradients of $\mathcal{L}(\theta, \varphi) = \mathbb{E}_{z \sim q_{\varphi}(Z|x)}[\log p_{\theta}(x|z)] - \mathrm{KL}(q_{\varphi}(Z|x)||p_{\lambda}(Z))$ • $\nabla_{\theta}\mathcal{L} = \mathbb{E}_{z \sim q_{\varphi}(Z|x)}[\nabla_{\theta} \log p_{\theta}(x|z)]$ • The expectation and sampling in $\mathbb{E}_{z \sim q_{\varphi}(Z|x)}$ does not depend on θ , so no problem! • Also, the KL does not depend on θ , so no gradient from over there! • $\nabla_{\varphi}\mathcal{L} = \nabla_{\varphi}\left[\mathbb{E}_{z \sim q_{\varphi}(Z|x)}[\log p_{\theta}(x|z)]\right] - \nabla_{\varphi}\left[\mathrm{KL}(q_{\varphi}(Z|x)||p_{\lambda}(Z))\right]$

• Backpropagation \rightarrow compute the gradients of $\mathcal{L}(\theta, \varphi) = \mathbb{E}_{z \sim q_{\varphi}(Z|x)}[\log p_{\theta}(x|z)] - \mathrm{KL}(q_{\varphi}(Z|x)||p_{\lambda}(Z))$

 \circ Backpropagation \rightarrow compute the gradients of $\mathcal{L}(\theta, \varphi) = \mathbb{E}_{z \sim q_{\varphi}(Z|x)}[\log p_{\theta}(x|z)] - \mathrm{KL}(q_{\varphi}(Z|x)||p_{\lambda}(Z))$ $\circ \nabla_{\theta} \mathcal{L} = \mathbb{E}_{z \sim q_{\varphi}(Z|x)} [\nabla_{\theta} \log p_{\theta}(x|z)]$ • The expectation and sampling in $\mathbb{E}_{z \sim q_{\varphi}(Z|x)}$ does not depend on θ , so no problem! $^{\circ}$ Also, the KL does not depend on θ , so no gradient from over there! $\circ \nabla_{\varphi} \mathcal{L} = \nabla_{\varphi} \left| \mathbb{E}_{z \sim q_{\varphi}(Z|x)} [\log p_{\theta}(x|z)] \right| - \nabla_{\varphi} \left[\mathrm{KL}(q_{\varphi}(Z|x)) || \mathbf{p}_{\lambda}(Z)) \right]$ • Problem?

 \circ Backpropagation \rightarrow compute the gradients of $\mathcal{L}(\theta, \varphi) = \mathbb{E}_{z \sim q_{\varphi}(Z|x)}[\log p_{\theta}(x|z)] - \mathrm{KL}(q_{\varphi}(Z|x)||p_{\lambda}(Z))$ $\circ \nabla_{\theta} \mathcal{L} = \mathbb{E}_{z \sim q_{\varphi}(Z|x)} [\nabla_{\theta} \log p_{\theta}(x|z)]$ • The expectation and sampling in $\mathbb{E}_{z \sim q_{\varphi}(Z|x)}$ does not depend on θ , so no problem! $^{\circ}$ Also, the KL does not depend on θ , so no gradient from over there! $\circ \nabla_{\varphi} \mathcal{L} = \nabla_{\varphi} \left| \mathbb{E}_{z \sim q_{\varphi}(Z|x)} [\log p_{\theta}(x|z)] \right| - \nabla_{\varphi} \left[\mathrm{KL}(q_{\varphi}(Z|x)) || \mathbf{p}_{\lambda}(Z)) \right]$ • Problem? Sampling $z \sim q_{\varphi}(Z|x)$ is not differentiable \rightarrow no gradients \circ No gradients \rightarrow No backprop \rightarrow No training! \rightarrow Solution?

o So, our latent variable Z is a Gaussian (in the standard VAE) represented by the mean and variance μ_Z , σ_Z , which are the output of a neural net

• So, we can train by sampling randomly from that Gaussian

 $z \sim N(\mu_Z, \sigma_Z)$

Once we have that z, however, it's a fixed value (not a function), so we cannot backprop

• We could use, however, the REINFORCE algorithm to compute an approximation to the gradient

• High-variance gradients \rightarrow slow and not very effective learning

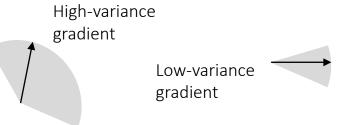
o Remember, we have a Gaussian output $z \sim N(\mu_Z, \sigma_Z)$

 $_{\rm O}$ For certain pdfs, including the Gaussian, we can rewrite their random variable z as deterministic transformations of a simpler random variable ε

• For the Gaussian specifically, the following two formulations are equivalent $z \sim N(\mu_Z, \sigma_Z) \iff z = \mu_Z + \varepsilon \cdot \sigma_Z$,

where $\varepsilon \sim N(0, 1)$ and μ_Z , σ_Z are deterministic values from the NN function

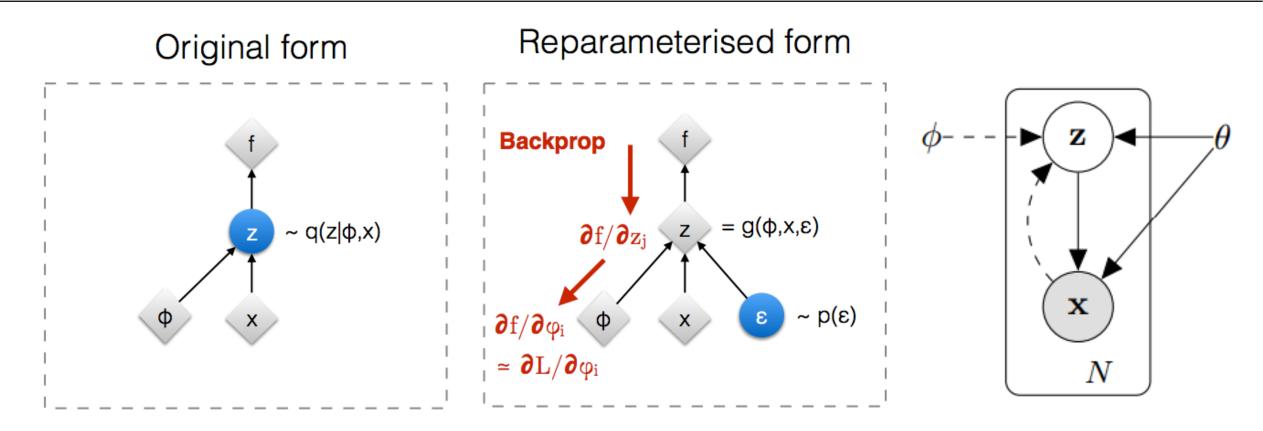
- o Instead of sampling from $z \sim N(\mu_Z, \sigma_Z)$, we sample from $\varepsilon \sim N(0, 1)$ and then we compute z
- o Sampling directly from $z \sim N(\mu_Z, \sigma_Z)$ leads to high-variance estimates
- o Sampling directly from $\varepsilon \sim N(0,1)$ leads to low-variance estimates • Why low variance? Exercise for the interested reader
- \circ Remember: since we are sampling for z, we are also sampling gradients
- More distributions beyond Gaussian possible: Laplace, Student-t, Logistic, Cauchy, Rayleight, Pareto



• Again, the latent variable is $z = \mu_Z + \varepsilon \cdot \sigma_z$

- $\circ \mu_Z$ and σ_Z are deterministic functions (via the neural network encoder)
- o *ε* is a random variable, which comes <u>externally</u>
- $_{\odot}$ The z as a result is itself a random variable, because of arepsilon
- However, now the randomness is not associated with the neural network and its parameters that we have to learn
 - °The randomness instead comes from the external arepsilon
 - \circ The gradients flow through μ_Z and σ_Z

Reparameterization Trick (graphically)



- : Deterministic node
- : Random node

[Kingma, 2013] [Bengio, 2013] [Kingma and Welling 2014] [Rezende et al 2014]

VAE Training Pseudocode

Data:

D: Dataset $q_{\phi}(\mathbf{z}|\mathbf{x})$: Inference model $p_{\theta}(\mathbf{x}, \mathbf{z})$: Generative model **Result**: θ, ϕ : Learned parameters $(\theta, \phi) \leftarrow$ Initialize parameters while SGD not converged do $\mathcal{M} \sim \mathcal{D}$ (Random minibatch of data) $\boldsymbol{\epsilon} \sim p(\boldsymbol{\epsilon})$ (Random noise for every datapoint in \mathcal{M}) Compute $\tilde{\mathcal{L}}_{\theta,\phi}(\mathcal{M},\epsilon)$ and its gradients $\nabla_{\theta,\phi}\tilde{\mathcal{L}}_{\theta,\phi}(\mathcal{M},\epsilon)$ Update θ and ϕ using SGD optimizer The ELBO's gradients end

" i want to talk to you . "
"i want to be with you . "
"i do n't want to be with you . "
i do n't want to be with you .
she did n't want to be with him .

he was silent for a long moment . he was silent for a moment . it was quiet for a moment . it was dark and cold . there was a pause . it was my turn .

Figure 2.D.2: An application of VAEs to interpolation between pairs of sentences, from [Bowman et al., 2015]. The intermediate sentences are grammatically correct, and the topic and syntactic structure are typically locally consistent.

VAE for Image Resynthesis

Smile vector: mean smiling faces – mean no-smile faces

Latent space arithmetic

Figure 2.D.3: VAEs can be used for image re-synthesis. In this example by White [2016], an original image (left) is modified in a latent space in the direction of a *smile vector*, producing a range of versions of the original, from smiling to sadness. Notice how changing the image along a single vector in latent space, modifies the image in many subtle and less-subtle ways in pixel space.

VAE for designing chemical compounds

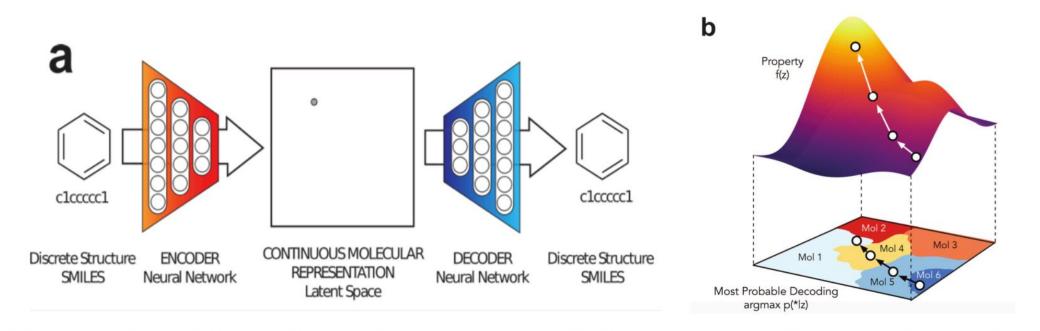


Figure 2.D.1: Example application of a VAE in [Gómez-Bombarelli et al., 2016]: design of new molecules with desired chemical properties. (a) A latent continuous representation \mathbf{z} of molecules is learned on a large dataset of molecules. (b) This continuous representation enables gradient-based search of new molecules that maximizes some chosen desired chemical property given by objective function $f(\mathbf{z})$.

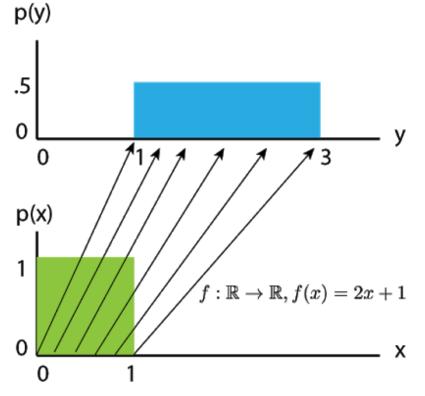
Normalizing Flows

 Better make sure the approximate posterior comes from a class of models that can <u>even</u> contain the true posterior

• Using simple pdfs, like a Gaussian, for the

• Use a series of *K* invertible transformations to construct the approximate posterior

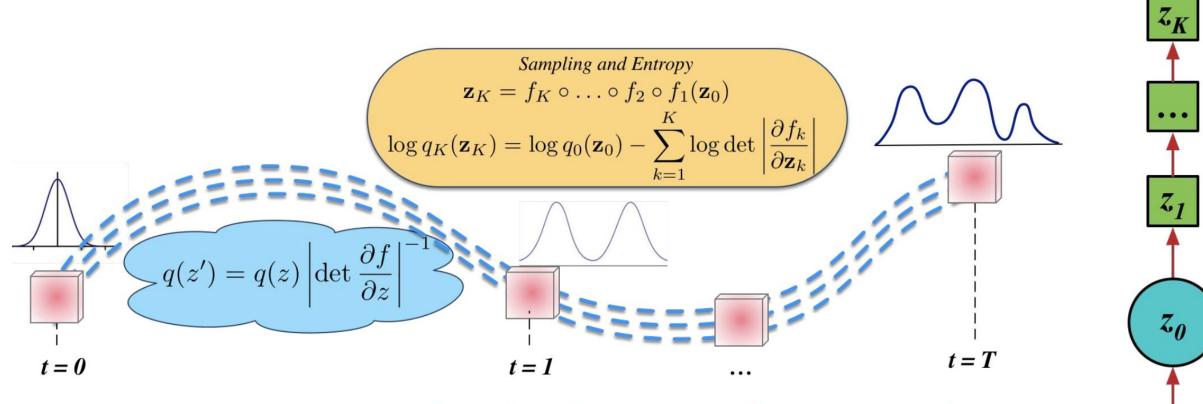
 https://arxiv.org/pdf/1505.05770.pdf



Changing from the x variable to y using the transformation y = f(x) = 2x + 1

Normalizing Flows

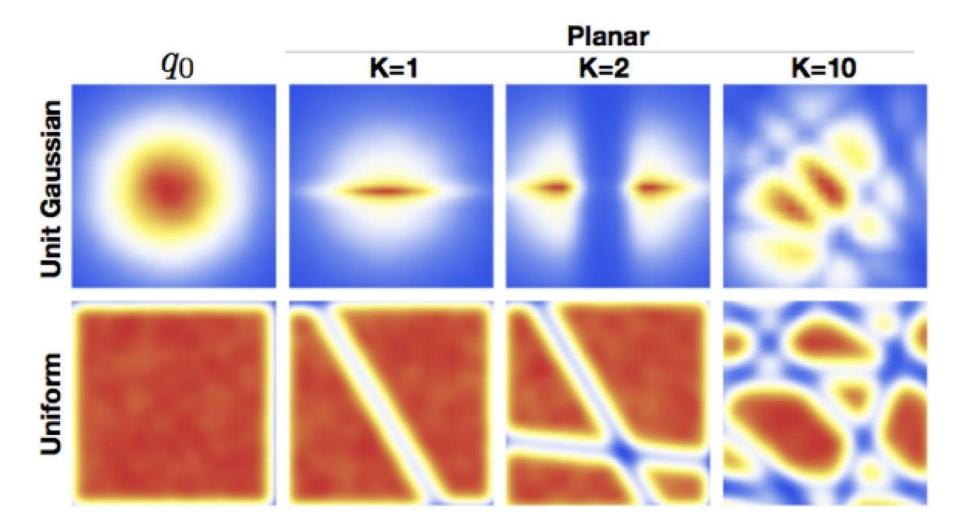
https://arxiv.org/pdf/1505.05770.pdf



Distribution flows through a sequence of invertible transforms

x

Normalizing Flows



https://www.shakirm.com/slides/DeepGenModelsTutorial.pdf

Normalizing Flows on Non-Euclidean Manifolds

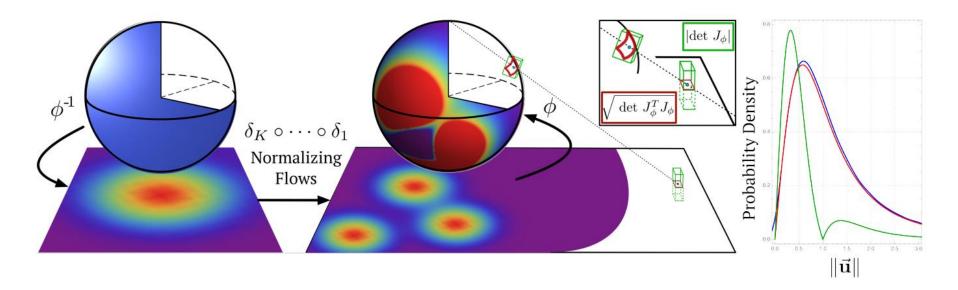


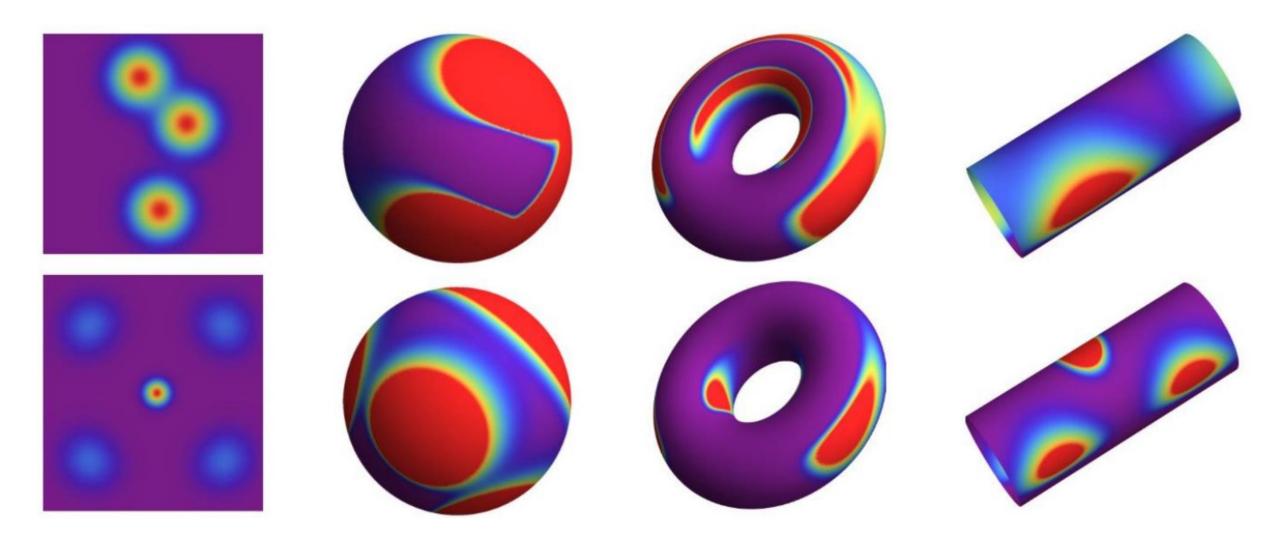
Figure 1: Left: Construction of a complex density on \mathbf{S}^n by first projecting the manifold to \mathbf{R}^n , transforming the density and projecting it back to \mathbf{S}^n . Right: Illustration of transformed ($\mathbf{S}^2 \to \mathbf{R}^2$) densities corresponding to an uniform density on the sphere. Blue: empirical density (obtained by Monte Carlo); Red: Analytical density from equation (4); Green: Density computed ignoring the intrinsic dimensionality of \mathbf{S}^n .

$$\log q_K(\mathbf{z}_K) = \log q_0(\mathbf{z}_0) - \frac{1}{2} \sum_{k=1}^{N} \log \det \left| \mathbf{J}_{\phi}^{\top} \mathbf{J}_{\phi} \right|$$

Gemici et al., 2016

https://www.shakirm.com/slides/DeepGenModelsTutorial.pdf

Normalizing Flows on Non-Euclidean Manifolds



Summary

UVA DEEP LEARNING COURSE EFSTRATIOS GAVVES EXPLICIT GENERATIVE MODELS - 65 • Gentle intro to Bayesian Modelling and Variational Inference • Restricted Boltzmann Machines • Deep Boltzmann Machines O Deep Belief Network Contrastive Divergence • Variational Autoencoders • Normalizing Flows